-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
174 lines (138 loc) · 5.01 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- coding: utf-8 -*-
import os
import torch
import shutil
import scipy.io
import numpy as np
from utils import get_yaml_value
def evaluate(qf, ql, gf, gl):
# print(qf.shape) torch.Size([512])
# print(gf.shape) torch.Size([51355, 512])
# print(ql) 0 ()
# print(gl) [0,0...0] len = 51355 shape = (51355,)
query = qf.view(-1, 1)
# print(query.shape) query.shape = (512,1)
# gf.shape = (51355, 512)
# 矩阵相乘
# score 是否可理解为当前余弦距离的排序?
score = torch.mm(gf, query)
# score.shape = (51355,1)
score = score.squeeze(1).cpu()
# score.shape = (51355,)
score = score.numpy()
# print(score)
# predict index
index = np.argsort(score) # from small to large
# 从小到大的索引排列
# print("index before", index)
index = index[::-1]
# print("index after", index)
# 从大到小的索引排列
# index = index[0:2000]
# good index
query_index = np.argwhere(gl == ql)
# print(query_index.shape) (54, 1)
# gl = ql 返回标签值相同的索引矩阵
# 得到 ql:卫星图标签,gl:无人机图标签
# 即 卫星图标签在 gl中的索引位置 组成的矩阵
good_index = query_index
# print(index[0:10])
junk_index = np.argwhere(gl == -1)
# print(junk_index) = []
CMC_tmp = compute_mAP(index, good_index, junk_index)
return CMC_tmp
def compute_mAP(index, good_index, junk_index):
# CMC就是recall的,只要前K里面有一个正确答案就算recall成功是1否则是0
# mAP是传统retrieval的指标,算的是 recall和precision曲线,这个曲线和x轴的面积。
# 你可以自己搜索一下mAP
ap = 0
cmc = torch.IntTensor(len(index)).zero_()
# print(cmc.shape) torch.Size([51355])
if good_index.size == 0: # if empty
cmc[0] = -1
return ap, cmc
# remove junk_index
mask = np.in1d(index, junk_index, invert=True)
index = index[mask]
# print(index.shape) (51355,)
# if junk_index == []
# return index fully
# find good_index index
ngood = len(good_index)
# print("good_index", good_index) (54, 1)
# print(index)
# print(good_index)
mask = np.in1d(index, good_index)
# print(mask)
# print(mask.shape) (51355,)
# 51355 中 54 个对应元素变为了True
rows_good = np.argwhere(mask == True)
# print(rows_good.shape) (54, 1)
# rows_good 得到这 54 个为 True 元素的索引位置
rows_good = rows_good.flatten()
# print(rows_good.shape) (54,)
# print(rows_good[0])
cmc[rows_good[0]:] = 1
# print(cmc)
# print(cmc.shape) torch.Size([51355])
# print(cmc)
for i in range(ngood):
d_recall = 1.0 / ngood
# d_racall = 1/54
precision = (i + 1) * 1.0 / (rows_good[i] + 1)
# n/sum
# print("row_good[]", i, rows_good[i])
# print(precision)
if rows_good[i] != 0:
old_precision = i * 1.0 / rows_good[i]
else:
old_precision = 1.0
ap = ap + d_recall * (old_precision + precision) / 2
return ap, cmc
############################### main function ###############################
if __name__ == '__main__':
print("Evaluating Start >>>>>>>>")
if get_yaml_value("query") == "satellite":
query_name = 'satellite'
gallery_name = 'drone'
elif get_yaml_value("query") == "drone":
query_name = 'drone'
gallery_name = 'satellite'
# load feature data
result = scipy.io.loadmat("pytorch_result.mat")
# initialize query feature data
query_feature = torch.FloatTensor(result['query_f'])
query_label = result['query_label'][0]
# initialize all(gallery) feature data
gallery_feature = torch.FloatTensor(result['gallery_f'])
gallery_label = result['gallery_label'][0]
# print(len(query_label))
# print(len(gallery_label))
# fed tensor to GPU
query_feature = query_feature.cuda()
gallery_feature = gallery_feature.cuda()
# CMC = recall
CMC = torch.IntTensor(len(gallery_label)).zero_()
# ap = average precision
ap = 0.0
for i in range(len(query_label)):
ap_tmp, CMC_tmp = evaluate(query_feature[i], query_label[i], gallery_feature, gallery_label)
if CMC_tmp[0] == -1:
continue
CMC += CMC_tmp
ap += ap_tmp
# average CMC
CMC = CMC.float()
CMC = CMC / len(query_label)
# show result and save
save_path = os.path.join('save_model_weight', get_yaml_value('name'))
save_txt_path = os.path.join(save_path, '%s_to_%s_result.txt' % (query_name, gallery_name))
result = 'Recall@1:%.2f Recall@5:%.2f Recall@10:%.2f Recall@top1:%.2f AP:%.2f' % (
CMC[0] * 100, CMC[4] * 100, CMC[9] * 100, CMC[round(len(gallery_label) * 0.01)] * 100,
ap / len(query_label) * 100)
with open(save_txt_path, 'w') as f:
f.write(result)
f.close()
shutil.copy('settings.yaml', os.path.join(save_path, "settings_saved.yaml"))
# print(round(len(gallery_label)*0.01))
print(result)