-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathpublished.bib
1104 lines (1056 loc) · 45.5 KB
/
published.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@Article {Ahmed:2022,
author = {Waqas Ahmed and Sheeba Samuel},
title = {{[Re] Nondeterminism and Instability in Neural Network Optimization}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#1}},
doi = {10.5281/zenodo.6574623},
url = {https://zenodo.org/record/6574623/files/article.pdf},
code_url = {https://github.com/wi25hoy/MLRC21_Nondeterminism},
code_doi = {},
code_swh = {swh:1:dir:75ebcdb9cee4f17c5440b6ca9fd2c6901a929aea},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=BNefkaG73At},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch}
}
@Article {Ankit:2022,
author = {Ankit Ankit and Sameer Ambekar and Baradwaj Varadharajan and Mark Alence},
title = {{[Re] Counterfactual Generative Networks}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#2}},
doi = {10.5281/zenodo.6574625},
url = {https://zenodo.org/record/6574625/files/article.pdf},
code_url = {https://github.com/ambekarsameer96/FACT_AI/},
code_doi = {},
code_swh = {swh:1:dir:88d89da0661c0f855f7b6f27c77acac1c2572a93},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=BSHg22G7n0F},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorc deep generative models, counterfactuals}
}
@Article {Ashok:2022,
author = {Arjun Ashok and Haswanth Aekula},
title = {{[Re] Does Self-Supervision Always Improve Few-Shot Learning?}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#3}},
doi = {10.5281/zenodo.6574629},
url = {https://zenodo.org/record/6574629/files/article.pdf},
code_url = {https://github.com/ashok-arjun/MLRC-2021-Few-Shot-Learning-And-Self-Supervision/},
code_doi = {10.5281/zenodo.6508499},
code_swh = {swh:1:dir:90d1c4d52eec769a1a18df5bd1f8bd0955f0ac24},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=ScfP3G73CY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch, few-shot learning, self-supervised learning}
}
@Article {Athanasiadis:2022,
author = {Ioannis Athanasiadis and Georgios Moschovis and Alexander Tuoma},
title = {{[Re] Weakly-Supervised Semantic Segmentation via Transformer Explainability}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#4}},
doi = {10.5281/zenodo.6574631},
url = {https://zenodo.org/record/6574631/files/article.pdf},
code_url = {https://github.com/athaioan/ViT_Affinity_Reproducibility_Challenge},
code_doi = {},
code_swh = {swh:1:dir:95342519c89e6957f4f90ee7e51d8724a48d9a56},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=rcEDhGX3AY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch}
}
@Article {Bagad:2022,
author = {Piyush Bagad and Paul Hilders and Jesse Maas and Danilo de Goede},
title = {{[Re] Reproducibility Study of “Counterfactual Generative Networks”}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#5}},
doi = {10.5281/zenodo.6574635},
url = {https://zenodo.org/record/6574635/files/article.pdf},
code_url = {https://github.com/danilodegoede/fact-team3/},
code_doi = {},
code_swh = {swh:1:dir:410075522df668dfae4742564f10b62de0cb8dc6},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=HNlzT3G720t},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, python, pytorch, deep generative models, counterfactuals}
}
@Article {Boer:2022,
author = {Sarah de Boer and Radu Alexandru Cosma and Lukas Knobel and Yeskendir Koishekenov and Benjamin Shaffrey},
title = {{[Re] Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#6}},
doi = {10.5281/zenodo.6574637},
url = {https://zenodo.org/record/6574637/files/article.pdf},
code_url = {https://github.com/reproducibilityaccount/reproducing-ridesharing},
code_doi = {10.5281/zenodo.6501845},
code_swh = {swh:1:rev:3beaa469b32b376f92b0fbae34493cdbe0e2ee3c},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=BE3Ms3GXhCF},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, ride-pooling, fairness, LSTM, ILP, resource allocation, matching algorithms, reinforcement learning, machine learning, deep learning, python, pytorch}
}
@Article {Brivio:2022,
author = {Matteo Brivio and Çağrı Çöltekin},
title = {{[¬Re] Hate Speech Detection based on Sentiment Knowledge Sharing}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#7}},
doi = {10.5281/zenodo.6574639},
url = {https://zenodo.org/record/6574639/files/article.pdf},
code_url = {https://github.com/matteobrv/repro-SKS},
code_doi = {10.5281/zenodo.6502870},
code_swh = {swh:1:dir:d61b47330cc5c92d7ac4873269faa38a2e3c20bd},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=SSSGs3M7nRY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, tensorflow, NLP, hate speech, sentiment}
}
@Article {Burger:2022,
author = {Maarten Burger and Kaya ter Burg and Sam Titarsolej and Selina Jasmin Khan},
title = {{[Re] Reproducibility Study - SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#8}},
doi = {10.5281/zenodo.6574641},
url = {https://zenodo.org/record/6574641/files/article.pdf},
code_url = {https://github.com/kayatb/reproduce_SCOUTER},
code_doi = {},
code_swh = {swh:1:dir:a294d795e2f9e00a93e9955b70c86a28b1c310d0},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=HZNlq3fmhRF},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, SCOUTER, XAI, Explainable, AI, Interpretable, Reproducibility, Attention, Self-attention, Computer Vision, python, pytorch}
}
@Article {Buvanesh:2022,
author = {Anirudh Buvanesh and Madhur Panwar},
title = {{[Re] AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#9}},
doi = {10.5281/zenodo.6574643},
url = {https://zenodo.org/record/6574643/files/article.pdf},
code_url = {https://github.com/anirudhb11/Adabelief-Optimizer-RC},
code_doi = {},
code_swh = {swh:1:dir:53eeebe14e9d02d912fc3c58c375b5095e8db941},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=B9gDnMmn0t},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, optimizers, image classification, language modelling, generative adversarial networks}
}
@Article {Dasu:2022,
author = {Vishnu Asutosh Dasu and Midhush Manohar T.K.},
title = {{[Re] GANSpace: Discovering Interpretable GAN Controls}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#10}},
doi = {10.5281/zenodo.6574645},
url = {https://zenodo.org/record/6574645/files/article.pdf},
code_url = {https://github.com/midsterx/ReGANSpace},
code_doi = {10.5281/zenodo.6511501},
code_swh = {swh:1:dir:4dc4de7856350a4671d97840c5f9ae013c275112},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=BtZVD2f7n0F},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, tensorflow, numpy, gans, image synthesis}
}
@Article {Drabent:2022,
author = {Karolina Drabent and Stefan Wijnja and Thijs Sluijter and Konrad Bereda},
title = {{[Re] Replication study of "Privacy-preserving Collaborative Learning"}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#11}},
doi = {10.5281/zenodo.6574647},
url = {https://zenodo.org/record/6574647/files/article.pdf},
code_url = {https://github.com/stfwn/ats-privacy-replication},
code_doi = {10.5281/zenodo.6508136},
code_swh = {swh:1:dir:1b0c9cb880eedcbdfb56c51afc8ed74ba437e14b},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=SY84JTG73CK},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch, pytorch lightning, federated learning, data augmentation, privacy}
}
@Article {Dzubur:2022,
author = {Benjamin Džubur},
title = {{[Re] A Cluster-based Approach for Improving Isotropy in Contextual Embedding Space}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#12}},
doi = {10.5281/zenodo.6574649},
url = {https://zenodo.org/record/6574649/files/article.pdf},
code_url = {https://github.com/Benidzu/isotropy_reproduction},
code_doi = {},
code_swh = {swh:1:dir:407d517fb5299301bcfc7f8aa461a4c3bf7c36b0},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=rxWeB3zQ2CY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, natural language processing, python}
}
@Article {Eaton:2022,
author = {Erica Eaton and Pirouz Naghavi},
title = {{[Re] Reproduction and Extension of "Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation"}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#13}},
doi = {10.5281/zenodo.6574651},
url = {https://zenodo.org/record/6574651/files/article.pdf},
code_url = {https://github.com/Pnaghavi/Mitigating-Gender-Bias-in-Generated-Text},
code_doi = {},
code_swh = {swh:1:dir:320f7080ccd0edd611da07e9dbd9dbe4bbd18758},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=StblE2MQ3AY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, natural language processing, deep learning, python, bias mitigation}
}
@Article {Sinha:2022,
author = {Koustuv Sinha and Jesse Dodge and Sasha Luccioni and Jessica Zosa Forde and Sharath Chandra Raparthy and Joelle Pineau and Robert Stojnic},
title = {{ML Reproducibility Challenge 2021}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#48}},
doi = {10.5281/zenodo.6574723},
url = {https://zenodo.org/record/6574723/files/article.pdf},
code_url = {},
code_doi = {},
code_swh = {},
data_url = {},
data_doi = {},
review_url = {},
type = {Editorial},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch}
}
@Article {Eijkelboom:2022,
author = {Floor Eijkelboom and Mark Fokkema and Anna Lau and Luuk Verheijen},
title = {{[Re] Reproduction Study of Variational Fair Clustering}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#14}},
doi = {10.5281/zenodo.6574653},
url = {https://zenodo.org/record/6574653/files/article.pdf},
code_url = {https://github.com/MarkiemarkF/FACT},
code_doi = {10.5281/zenodo.6508390},
code_swh = {swh:1:dir:016245babcdc02c28ac98547de32f7270c79f81f},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=rq8fRhMm20F},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, python, pytorch, clustering, fairness}
}
@Article {Geijn:2022,
author = {Chase van de Geijn and Victor Kyriacou and Irene Papadopoulou and Vasiliki Vasileiou},
title = {{[Re] Explaining in Style: Training a GAN to explain a classifier in StyleSpace}},
journal = {None},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#15}},
doi = {10.5281/zenodo.6574655},
url = {https://zenodo.org/record/6574655/files/article.pdf},
code_url = {https://github.com/irenepap2/Re_StylEx.git},
code_doi = {10.5281/zenodo.6508290},
code_swh = {swh:1:dir:f0871f3a14e536717d3225180942c4a385ce39e3},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=SK8gAhfX2AK},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch}
}
@Article {Hardy:2022,
author = {Ian Hardy},
title = {{[Re] An Implementation of Fair Robust Learning}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#16}},
doi = {10.5281/zenodo.6574657},
url = {https://zenodo.org/record/6574657/files/article.pdf},
code_url = {https://github.com/Ian-Hardy/Fair_Robust_Modeling},
code_doi = {10.5281/zenodo.6506696},
code_swh = {swh:1:dir:bd6142ce2ce3fd99fab9918a6c6754115035abe4},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=Sczshz7h0K},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch, adversarial training, fairness, robustness}
}
@Article {Hoppe:2022,
author = {Tobias Höppe and Agnieszka Miszkurka and Dennis Bogatov Wilkman},
title = {{[Re] Understanding Self-Supervised Learning Dynamics without Contrastive Pairs}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#17}},
doi = {10.5281/zenodo.6574659},
url = {https://zenodo.org/record/6574659/files/article.pdf},
code_url = {https://github.com/miszkur/SelfSupervisedLearning},
code_doi = {10.5281/zenodo.6508184},
code_swh = {swh:1:dir:ec5169f4713c6c67088d980c76f1c25bc1c399bc},
data_url = {https://www.cs.toronto.edu/~kriz/cifar.html},
data_doi = {},
review_url = {https://openreview.net/forum?id=r4xe3nMQ3AY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch}
}
@Article {Jiles:2022,
author = {Richard Jiles and Mohna Chakraborty},
title = {{[Re] Domain Generalization using Causal Matching}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#18}},
doi = {10.5281/zenodo.6574661},
url = {https://zenodo.org/record/6574661/files/article.pdf},
code_url = {https://github.com/rjiles/causalmatching},
code_doi = {10.5281/zenodo.6529518},
code_swh = {swh:1:dir:08875ab42adddf57b8019c82f4e5889d1009743c},
data_url = {https://github.com/rjiles/causalmatching},
data_doi = {10.5281/zenodo.6529518},
review_url = {https://openreview.net/forum?id=r43elaGmhCY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch}
}
@Article {Kirca:2022,
author = {Isa-Ali Kirca and Daniël Hamerslag and Afra Baas and Juno Prent},
title = {{[¬Re] Reproducibility Study of 'Exacerbating Algorithmic Bias through Fairness Attacks' }},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#19}},
doi = {10.5281/zenodo.6574663},
url = {https://zenodo.org/record/6574663/files/article.pdf},
code_url = {https://github.com/DCHamerslag/FACT},
code_doi = {10.5281/zenodo.6491095},
code_swh = {swh:1:dir:25564a437957494e991b5205e262159e75d84d59;},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=rKbgh3fXnRK},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python}
}
@Article {Kolkman:2022,
author = {Guilly Kolkman and Jan Athmer and Alex Labro and Maksymilian Kulicki},
title = {{[Re] Strategic classification made practical: reproduction}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#20}},
doi = {10.5281/zenodo.6574665},
url = {https://zenodo.org/record/6574665/files/article.pdf},
code_url = {https://github.com/GuillyK/FACT-ai},
code_doi = {},
code_swh = {swh:1:dir:31ff8f4d7da6e70c88e4d28ba0c18ee5f04ac424;},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=rNgg03fXnRY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch}
}
@Article {Bosch:2022,
author = {Evaline Bosch and Rutger Ettes and Daan Korporaal and Gijs van Meer},
title = {{[Re] Replication study of 'Explaining in Style: Training a GAN to explain a classifier in StyleSpace'}},
journal = {None},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#21}},
doi = {10.5281/zenodo.6574667},
url = {https://zenodo.org/record/6574667/files/article.pdf},
code_url = {https://github.com/Gijsvanmeer/FACTinAI},
code_doi = {10.5281/zenodo.6508302},
code_swh = {swh:1:dir:1d0dbddb7bc7060aee89621b45cea15325dca1b1},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=BtIz0nz7hRY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch, AI, GANs, SyleSpace, reconstruction}
}
@Article {Tafuro:2022,
author = {Matteo Tafuro and Andrea Lombardo and Tin Hadži Veljković and Lasse Becker-Czarnetzki},
title = {{[Re] Exacerbating Algorithmic Bias through Fairness Attacks}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#22}},
doi = {10.5281/zenodo.6574669},
url = {https://zenodo.org/record/6574669/files/article.pdf},
code_url = {https://github.com/imandrealombardo/FACT-AI},
code_doi = {},
code_swh = {swh:1:dir:b775237e47e9de16827cb9cae83423d090faa4f8},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=H4lzChGmhCK},
type = {Replication},
language = {python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, rescience x, reproducibility, machine learning, deep learning, fairness, python, tensorflow, adversarial attack, fairness attack, algorithmic bias, influence attack on fairness, anchoring attack}
}
@Article {De~Luisa:2022,
author = {Andra\v{z} De~Luisa},
title = {{[Re] Thompson Sampling for Bandits with Clustered Arms}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#23}},
doi = {10.5281/zenodo.6574671},
url = {https://zenodo.org/record/6574671/files/article.pdf},
code_url = {https://github.com/andrazdeluisa/reproducibility_challenge},
code_doi = {10.5281/zenodo.6498328},
code_swh = {swh:1:dir:d1d7fa93e952cf14154d5415f253b6507af22833},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=r5LS3fmh0t},
type = {Replication},
language = {R},
domain = {ML Reproducibility Challenge 2021},
keywords = {Multi-armed bandits, Thompson sampling, R, rescience c, machine learning}
}
@Article {Mast:2022,
author = {Diego van der Mast and Soufiane Ben Haddou and Jacky Chu and Jaap Stefels},
title = {{[Re] Replication Study of "Fairness and Bias in Online Selection"}},
journal = {None},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#24}},
doi = {10.5281/zenodo.6574673},
url = {https://zenodo.org/record/6574673/files/article.pdf},
code_url = {https://github.com/Di-ayy-go/fact-ai},
code_doi = {10.5281/zenodo.6518051},
code_swh = {swh:1:dir:45176f5005ed390a349cd01e61ed37711095879e},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=SNeep2MXn0K},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, rescience x, Python, machine learning, fairness}
}
@Article {Chen:2022,
author = {Andy Chen and Shion Matsumoto and Rohan Sinha Varma},
title = {{[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#25}},
doi = {10.5281/zenodo.6574675},
url = {https://zenodo.org/record/6574675/files/article.pdf},
code_url = {https://github.com/andyzfchen/truncatedSVD},
code_doi = {},
code_swh = {swh:1:dir:4116fecf6ec4ac207cdad025ec62b25839a75678},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=HN2xWpMQ30K},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, python, pytorch}
}
@Article {Mehta:2022,
author = {Aryan Mehta and Karan Uppal and Kaushal Jadhav and Monish Natarajan and Mradul Agrawal and Debashish Chakravarty},
title = {{[Re] Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#26}},
doi = {10.5281/zenodo.6574677},
url = {https://zenodo.org/record/6574677/files/article.pdf},
code_url = {https://github.com/karan-uppal3/BANA},
code_doi = {},
code_swh = {swh:1:dir:24495d2fbb5d4af66607261c2171ed42173a72cf},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=rUQllTGQhAY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch}
}
@Article {Mikler:2022,
author = {Szymon Mikler},
title = {{[Re] Reproducibility Study: Comparing Rewinding and Fine-tuning in Neural Network Pruning}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#27}},
doi = {10.5281/zenodo.6574679},
url = {https://zenodo.org/record/6574679/files/article.pdf},
code_url = {https://github.com/gahaalt/reproducing-comparing-rewinding-and-finetuning},
code_doi = {10.5281/zenodo.6519109},
code_swh = {swh:1:dir:886a4c9a0bdecdbf65f2cab3ae7404a6796bc451},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=HxWEL2zQ3AK},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, tensorflow, computer vision, pruning}
}
@Article {Nalmpantis:2022,
author = {Angelos Nalmpantis and Apostolos Panagiotopoulos and John Gkountouras and Konstantinos Papakostas},
title = {{[Re] Exacerbating Algorithmic Bias through Fairness Attacks}},
journal = {None},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#28}},
doi = {10.5281/zenodo.6574681},
url = {https://zenodo.org/record/6574681/files/article.pdf},
code_url = {https://github.com/toliz/fairness-attacks},
code_doi = {10.5281/zenodo.6505214},
code_swh = {swh:1:dir:224b71f5d3c02f260427e2f7c492b6db98c65638},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=rYLMJ6zX3RF},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, python, pytorch, fairness, adversarial attacks}
}
@Article {Neplenbroek:2022,
author = {Vera Neplenbroek and Sabijn Perdijk and Victor Prins},
title = {{[Re] Replication study of 'Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling'}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#29}},
doi = {10.5281/zenodo.6574683},
url = {https://zenodo.org/record/6574683/files/article.pdf},
code_url = {https://github.com/Veranep/rideshare-replication},
code_doi = {10.5281/zenodo.6501799},
code_swh = {swh:1:dir:f5439c1a7a15c4eb709da6f32eb252679a1d44bd},
data_url = {https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page},
data_doi = {},
review_url = {https://openreview.net/forum?id=BEhgn2zm3CK},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch, ridesharing, fairness}
}
@Article {Galatolo:2022,
author = {Alessio Galatolo and Alfred Nilsson},
title = {{[Re] Replicating and Improving GAN2Shape Through Novel Shape Priors and Training Steps}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#30}},
doi = {10.5281/zenodo.6574685},
url = {https://zenodo.org/record/6574685/files/article.pdf},
code_url = {https://github.com/alessioGalatolo/GAN-2D-to-3D},
code_doi = {},
code_swh = {swh:1:dir:531d1456baa3bb553ce549785158be7005c682c7},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=B8mxkTzX2RY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch, gan2shape, 3d}
}
@Article {Panigrahi:2022,
author = {Siba Smarak Panigrahi and Sohan Patnaik},
title = {{[Re] Value Alignment Verification}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#31}},
doi = {10.5281/zenodo.6574687},
url = {https://zenodo.org/record/6574687/files/article.pdf},
code_url = {https://github.com/AIExL/vav_rc2021},
code_doi = {},
code_swh = {swh:1:dir:4d43ea96458cc573dd2b57208fae0b12f8da896f},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=BFLM3nMmhCt},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, value alignment verification, reinforcement learning, machine learning, python}
}
@Article {Petcu:2022,
author = {Roxana Petcu and Pim Praat and Jeroen Wijnen and Manolis Rerres},
title = {{[Re] Replication Study of "Fairness and Bias in Online Selection"}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#32}},
doi = {10.5281/zenodo.6574689},
url = {https://zenodo.org/record/6574689/files/article.pdf},
code_url = {https://github.com/pimpraat/FACT-Ai},
code_doi = {},
code_swh = {swh:1:dir:da9cb18759db5ecf30608639d8b35a4b247a483d},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=S9gs3MmhAY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, online selection, prophet problem, secretary problem, fairness, bias, Python}
}
@Article {Peters:2022,
author = {Nils Peters and Joy Crosbie and Rachel van\'t Hull and Marius Strampel},
title = {{[¬Re] Reproducing 'Fair Selective Classification via Sufficiency'}},
journal = {None},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#33}},
doi = {10.5281/zenodo.6574691},
url = {https://zenodo.org/record/6574691/files/article.pdf},
code_url = {https://github.com/MLRC2022FSCS/FSCS},
code_doi = {10.5281/zenodo.6479342},
code_swh = {swh:1:dir:effcbb5800e91db9053cb59c68bbc097a10da7cf},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=r9Leh2M7hCt},
type = {Replication},
language = {Python 3},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, classification, selective classification, sufficiency, machine learning, Python 3}
}
@Article {Ranjan:2022,
author = {Rohit Ranjan and Himadri Bhakta and Animesh Jha and Parv Maheshwari},
title = {{[Re] Differentiable Spatial Planning using Transformers}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#34}},
doi = {10.5281/zenodo.6574693},
url = {https://zenodo.org/record/6574693/files/article.pdf},
code_url = {https://github.com/sirmisscriesalot/Differentiable-Spatial-Planning-using-Transformers},
code_doi = {10.5281/zenodo.6475614},
code_swh = {swh:1:dir:6aa6080e642126b1166661d245a4f594a777889b},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=HFUI1pfQnCF},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch}
}
@Article {Rucks:2022,
author = {Nick Rucks and Tobias Uelwer and Stefan Harmeling},
title = {{[Re] Solving Phase Retrieval With a Learned Reference}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#35}},
doi = {10.5281/zenodo.6574695},
url = {https://zenodo.org/record/6574695/files/article.pdf},
code_url = {https://github.com/tuelwer/machine-learning-reproducibility-challenge-2021},
code_doi = {},
code_swh = {swh:1:dir:0a7ba3d1b8f4d4e2ee09a62ddfbe2e8a124d6b1e},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=rlWzUnM72RF},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, phase retrieval, machine learning, python, pytorch}
}
@Article {Sen:2022,
author = {Roopsa Sen and Sidharth Sinha and Animesh Jha and Parv Maheshwari},
title = {{[Re] Reproducibility Report: Contrastive Learning of Socially-aware Motion Representations}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#36}},
doi = {10.5281/zenodo.6574697},
url = {https://zenodo.org/record/6574697/files/article.pdf},
code_url = {https://github.com/RoopsaSen/social-nce-trajectron-plus-plus},
code_doi = {10.5281/zenodo.6511007},
code_swh = {swh:1:dir:ba72ac2acf3bac942d9b3a66e51091e6bcce6617},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=SIQEl6f7h0Y},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch}
}
@Article {Shukla:2022,
author = {Abhishek Shukla and Sourya Roy and Yogesh Chawla and Avi Amalanshu and Shubhendu Pandey and Rudransh Agrawal and Aditya Uppal and Viswesh N and Pradipto Mondal and Anubhab Dasgupta and Debashis Chakravarty},
title = {{[Re] From goals, waypoints and paths to longterm human trajectory forecasting}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#37}},
doi = {10.5281/zenodo.6574699},
url = {https://zenodo.org/record/6574699/files/article.pdf},
code_url = {https://github.com/Viswesh-N/MLRC-2021},
code_doi = {},
code_swh = {swh:1:dir:3ddeeb8325dbac3f85d05e49621a9adef5f44ebb},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=HV2zgpM7n0F},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, trajectory prediction, machine learning, deep learning, python, pytorch}
}
@Article {Stropnik:2022,
author = {Vid Stropnik and Maruša Oražem},
title = {{[Re] Graph Edit Networks}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#38}},
doi = {10.5281/zenodo.6574701},
url = {https://zenodo.org/record/6574701/files/article.pdf},
code_url = {https://github.com/MarusaOrazem/reproducibility_challenge},
code_doi = {10.5281/zenodo.6505384},
code_swh = {swh:1:dir:a48bde44f1ef0b6f060687ea7b8b164a97b0931e},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=H5lOnzXhAY},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {machine learning, network analysis, graph machine learning, pytorch, python, rescience c}
}
@Article {Kljun:2022,
author = {Maša Kljun and Matija Teršek and Domen Vreš},
title = {{[Re] Learning to count everything}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#39}},
doi = {10.5281/zenodo.6574703},
url = {https://zenodo.org/record/6574703/files/article.pdf},
code_url = {https://github.com/tersekmatija/re-LearningToCountEverything},
code_doi = {10.5281/zenodo.6508260},
code_swh = {swh:1:dir:cf19f5a717c777cd1097e938ef4e6bdb735f71c7},
data_url = {https://drive.google.com/file/d/1ymDYrGs9DSRicfZbSCDiOu0ikGDh5k6S/view?usp=sharing},
data_doi = {},
review_url = {https://openreview.net/forum?id=HKbgd3zmh0t},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {few-shot learning, few-shot counting, CNN, counting data set, rescience c, machine learning, python}
}
@Article {Togt:2022,
author = {Jille van der Togt and Lea Tiyavorabun and Matteo Rosati and Giulio Starace},
title = {{[Re] Badder Seeds: Reproducing the Evaluation of Lexical Methods for Bias Measurement}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#40}},
doi = {10.5281/zenodo.6574705},
url = {https://zenodo.org/record/6574705/files/article.pdf},
code_url = {https://github.com/thesofakillers/badder-seeds},
code_doi = {10.5281/zenodo.6480966},
code_swh = {swh:1:dir:13ff45fd249e765a221d49f701c32d45b64ee675},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=HcIxA3Mm2CF},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch, nlp, bias, seeds}
}
@Article {Trojer:2022,
author = {Žiga Trojer},
title = {{[Re] Transparent Object Tracking Benchmark}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#41}},
doi = {10.5281/zenodo.6574707},
url = {https://zenodo.org/record/6574707/files/article.pdf},
code_url = {https://github.com/trojerz/TOTB-reproducability},
code_doi = {10.5281/zenodo.6475970},
code_swh = {swh:1:dir:b80fa866c01389a46dde8b6f419d893d127f1025},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=HxZZV3MQ20Y},
type = {Replication},
language = {Python, Matlab},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, tracking, computer vision, python, pytorch, matlab}
}
@Article {Vleuten:2022,
author = {Noah van der Vleuten and Tadija Radusinović and Rick Akkerman and Meilina Reksoprodjo},
title = {{[Re] Explaining in Style: Training a GAN to explain a classifier in StyleSpace}},
journal = {None},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#42}},
doi = {10.5281/zenodo.6574709},
url = {https://zenodo.org/record/6574709/files/article.pdf},
code_url = {https://github.com/NoahVl/Explaining-In-Style-Reproducibility-Study},
code_doi = {10.5281/zenodo.6512392},
code_swh = {swh:1:dir:04e11a55f476b115b40fd6af9d06ed70eb248535},
data_url = {},
data_doi = {},
review_url = {https://openreview.net/forum?id=SYUxyazQh0Y},
type = {Replication},
language = {Python},
domain = {ML Reproducibility Challenge 2021},
keywords = {rescience c, machine learning, deep learning, python, pytorch, explainable ai, xai, gan, stylegan2, stylex}
}
@Article {Shulev:2022,
author = {Velizar Shulev and Paul Verhagen and Shuai Wang and Jennifer Zhuge},
title = {{[Re] Replication Study of DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks}},
journal = {ReScience C},
year = {2022},
month = {5},
volume = {8},
number = {2},
pages = {{#43}},
doi = {10.5281/zenodo.6574711},
url = {https://zenodo.org/record/6574711/files/article.pdf},