forked from NVIDIA/CUDALibrarySamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3d_mgpu_c2c_example.cpp
195 lines (157 loc) · 7.05 KB
/
3d_mgpu_c2c_example.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <array>
#include <complex>
#include <iostream>
#include <random>
#include <vector>
#include <cuda_runtime.h>
#include <cufftXt.h>
#include "cufft_utils.h"
using cpudata_t = std::vector<std::complex<float>>;
using gpus_t = std::vector<int>;
using dim_t = std::array<size_t, 3>;
void fill_array(cpudata_t &array) {
std::mt19937 gen(3); // certified random number
std::uniform_real_distribution<float> dis(0.0f, 1.0f);
for (size_t i = 0; i < array.size(); ++i) {
float real = dis(gen);
float imag = dis(gen);
array[i] = {real, imag};
};
};
/** Single GPU version of cuFFT plan for reference. */
void single(dim_t fft, cpudata_t &h_data_in, cpudata_t &h_data_out) {
cufftHandle plan{};
CUFFT_CALL(cufftCreate(&plan));
size_t workspace_size;
CUFFT_CALL(cufftMakePlan3d(plan, fft[0], fft[1], fft[2], CUFFT_C2C, &workspace_size));
void *d_data;
size_t datasize = h_data_in.size() * sizeof(std::complex<float>);
CUDA_RT_CALL(cudaMalloc(&d_data, datasize));
CUDA_RT_CALL(cudaMemcpy(d_data, h_data_in.data(), datasize, cudaMemcpyHostToDevice));
CUFFT_CALL(cufftXtExec(plan, d_data, d_data, CUFFT_FORWARD));
CUDA_RT_CALL(cudaMemcpy(h_data_out.data(), d_data, datasize, cudaMemcpyDeviceToHost));
CUDA_RT_CALL(cudaFree(d_data));
CUFFT_CALL(cufftDestroy(plan));
};
/** Since cuFFT 10.4.0 cufftSetStream can be used to associate a stream with
* multi-GPU plan. cufftXtExecDescriptor synchronizes efficiently to the stream
* before and after execution. Please refer to
* https://docs.nvidia.com/cuda/cufft/index.html#function-cufftsetstream for
* more information.
* cuFFT by default executes multi-GPU plans in synchronous manner.
* */
void spmg(dim_t fft, gpus_t gpus, cpudata_t &h_data_in, cpudata_t &h_data_out,
cufftXtSubFormat_t subformat) {
// Initiate cufft plan
cufftHandle plan{};
CUFFT_CALL(cufftCreate(&plan));
#if CUFFT_VERSION >= 10400
// Create CUDA Stream
cudaStream_t stream{};
CUDA_RT_CALL(cudaStreamCreate(&stream));
CUFFT_CALL(cufftSetStream(plan, stream));
#endif
// Define which GPUS are to be used
CUFFT_CALL(cufftXtSetGPUs(plan, gpus.size(), gpus.data()));
// Create the plan
// With multiple gpus, worksize will contain multiple sizes
size_t workspace_sizes[gpus.size()];
CUFFT_CALL(cufftMakePlan3d(plan, fft[0], fft[1], fft[2], CUFFT_C2C, workspace_sizes));
cudaLibXtDesc *indesc;
// Copy input data to GPUs
CUFFT_CALL(cufftXtMalloc(plan, &indesc, subformat));
CUFFT_CALL(cufftXtMemcpy(plan, reinterpret_cast<void *>(indesc),
reinterpret_cast<void *>(h_data_in.data()),
CUFFT_COPY_HOST_TO_DEVICE));
// Execute the plan
CUFFT_CALL(cufftXtExecDescriptor(plan, indesc, indesc, CUFFT_FORWARD));
// Copy output data to CPU
CUFFT_CALL(cufftXtMemcpy(plan, reinterpret_cast<void *>(h_data_out.data()),
reinterpret_cast<void *>(indesc), CUFFT_COPY_DEVICE_TO_HOST));
CUFFT_CALL(cufftXtFree(indesc));
CUFFT_CALL(cufftDestroy(plan));
#if CUFFT_VERSION >= 10400
CUDA_RT_CALL(cudaStreamDestroy(stream));
#endif
};
/** Runs single and multi-GPU version of cuFFT plan then compares results.
* Maximum FFT size limited by single GPU memory.
* */
int main(int argc, char *argv[]) {
dim_t fft = {256, 256, 256};
// can be {0, 0} to run on single-GPU system or if GPUs are not of same architecture
gpus_t gpus = {0, 1};
size_t element_count = fft[0] * fft[1] * fft[2];
cpudata_t data_in(element_count);
fill_array(data_in);
cpudata_t data_out_reference(element_count, {-1.0f, -1.0f});
cpudata_t data_out_test(element_count, {-0.5f, -0.5f});
cufftXtSubFormat_t decomposition = CUFFT_XT_FORMAT_INPLACE_SHUFFLED;
spmg(fft, gpus, data_in, data_out_test, decomposition);
single(fft, data_in, data_out_reference);
// The cuFFT library doesn't guarantee that single-GPU and multi-GPU cuFFT
// plans will perform mathematical operations in same order. Small
// numerical differences are possible.
// verify results
double error{};
double ref{};
for (size_t i = 0; i < element_count; ++i) {
error += std::norm(data_out_test[i] - data_out_reference[i]);
ref += std::norm(data_out_reference[i]);
};
double l2_error = (ref == 0.0) ? std::sqrt(error) : std::sqrt(error) / std::sqrt(ref);
if (l2_error < 0.001) {
std::cout << "PASSED with L2 error = " << l2_error << std::endl;
} else {
std::cout << "FAILED with L2 error = " << l2_error << std::endl;
};
return EXIT_SUCCESS;
};