forked from NVIDIA/CUDALibrarySamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwatershedSegmentation.cpp
634 lines (543 loc) · 31 KB
/
watershedSegmentation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/* Copyright 2020 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* The source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* The Licensed Deliverables contained herein are PROPRIETARY and
* CONFIDENTIAL to NVIDIA and are being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. THEY ARE
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and are provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include "watershedSegmentation.h"
// Note: If you want to view these images we HIGHLY recommend using imagej which is free on the internet and works on most platforms
// because it is one of the few image viewing apps that can display 32 bit integer image data. While it normalizes the data
// to floating point values for viewing it still provides a good representation of the relative brightness of each label value.
//
// The files read and written by this sample app use RAW image format, that is, only the image data itself exists in the files
// with no image format information. When viewing RAW files with imagej just enter the image size and bit depth values that
// are part of the file name when requested by imagej.
//
#define NUMBER_OF_IMAGES 5
Npp8u * pInputImageDev[NUMBER_OF_IMAGES];
Npp8u * pInputImageHost[NUMBER_OF_IMAGES];
Npp8u * pSegmentationScratchBufferDev[NUMBER_OF_IMAGES];
Npp8u * pSegmentsDev[NUMBER_OF_IMAGES];
Npp8u * pSegmentsHost[NUMBER_OF_IMAGES];
Npp32u * pSegmentLabelsOutputBufferDev[NUMBER_OF_IMAGES];
Npp32u * pSegmentLabelsOutputBufferHost[NUMBER_OF_IMAGES];
void tearDown() // Clean up and tear down
{
for (int j = 0; j < NUMBER_OF_IMAGES; j++)
{
if (pSegmentLabelsOutputBufferDev[j] != 0)
cudaFree(pSegmentLabelsOutputBufferDev[j]);
if (pSegmentationScratchBufferDev[j] != 0)
cudaFree(pSegmentationScratchBufferDev[j]);
if (pSegmentsDev[j] != 0)
cudaFree(pSegmentsDev[j]);
if (pInputImageDev[j] != 0)
cudaFree(pInputImageDev[j]);
if (pSegmentLabelsOutputBufferHost[j] != 0)
free(pSegmentLabelsOutputBufferHost[j]);
if (pSegmentsHost[j] != 0)
free(pSegmentsHost[j]);
if (pInputImageHost[j] != 0)
free(pInputImageHost[j]);
}
}
const std::string & Path = std::string("../images/");
const std::string & InputFile0 = Path + std::string("Lena_512x512_8u_Gray.raw");
const std::string & InputFile1 = Path + std::string("CT_skull_512x512_8u_Gray.raw");
const std::string & InputFile2 = Path + std::string("Rocks_512x512_8u_Gray.raw");
const std::string & InputFile3 = Path + std::string("coins_500x383_8u_Gray.raw");
const std::string & InputFile4 = Path + std::string("coins_overlay_500x569_8u_Gray.raw");
const std::string & SegmentsOutputFile0 = Path + std::string("Lena_Segments_8Way_512x512_8u.raw");
const std::string & SegmentsOutputFile1 = Path + std::string("CT_skull_Segments_8Way_512x512_8u.raw");
const std::string & SegmentsOutputFile2 = Path + std::string("Rocks_Segments_8Way_512x512_8u.raw");
const std::string & SegmentsOutputFile3 = Path + std::string("coins_Segments_8Way_500x383_8u.raw");
const std::string & SegmentsOutputFile4 = Path + std::string("coins_overlay_segments_500x569_8u.raw");
const std::string & SegmentBoundariesOutputFile0 = Path + std::string("Lena_SegmentBoundaries_8Way_512x512_8u.raw");
const std::string & SegmentBoundariesOutputFile1 = Path + std::string("CT_skull_SegmentBoundaries_8Way_512x512_8u.raw");
const std::string & SegmentBoundariesOutputFile2 = Path + std::string("Rocks_SegmentBoundaries_8Way_512x512_8u.raw");
const std::string & SegmentBoundariesOutputFile3 = Path + std::string("coins_SegmentBoundaries_8Way_500x383_8u.raw");
const std::string & SegmentBoundariesOutputFile4 = Path + std::string("coins_overlay_SegmentBoundaries_8Way_500x569_8u.raw");
const std::string & SegmentsWithContrastingBoundariesOutputFile0 = Path + std::string("Lena_SegmentsWithContrastingBoundaries_8Way_512x512_8u.raw");
const std::string & SegmentsWithContrastingBoundariesOutputFile1 = Path + std::string("CT_skull_SegmentsWithContrastingBoundaries_8Way_512x512_8u.raw");
const std::string & SegmentsWithContrastingBoundariesOutputFile2 = Path + std::string("Rocks_SegmentsWithContrastingBoundaries_8Way_512x512_8u.raw");
const std::string & SegmentsWithContrastingBoundariesOutputFile3 = Path + std::string("coins_SegmentsWithContrastingBoundaries_8Way_500x383_8u.raw");
const std::string & SegmentsWithContrastingBoundariesOutputFile4 = Path + std::string("coins_overlay_SegmentsWithContrastingBoundaries_8Way_500x569_8u.raw");
const std::string & CompressedSegmentLabelsOutputFile0 = Path + std::string("Lena_CompressedSegmentLabels_8Way_512x512_32u.raw");
const std::string & CompressedSegmentLabelsOutputFile1 = Path + std::string("CT_skull_CompressedSegmentLabels_8Way_512x512_32u.raw");
const std::string & CompressedSegmentLabelsOutputFile2 = Path + std::string("Rocks_CompressedSegmentLabels_8Way_512x512_32u.raw");
const std::string & CompressedSegmentLabelsOutputFile3 = Path + std::string("coins_CompressedSegmentLabels_8Way_500x383_32u.raw");
const std::string & CompressedSegmentLabelsOutputFile4 = Path + std::string("coins_overlay_CompressedSegmentLabels_8Way_500x569_32u.raw");
int
loadRaw8BitImage(Npp8u * pImage, int nWidth, int nHeight, int nImage)
{
FILE * bmpFile;
size_t nSize;
if (nImage == 0)
{
if (nWidth != 512 || nHeight != 512)
return -1;
fopen_s(&bmpFile, InputFile0.c_str(), "rb");
}
else if (nImage == 1)
{
if (nWidth != 512 || nHeight != 512)
return -1;
fopen_s(&bmpFile, InputFile1.c_str(), "rb");
}
else if (nImage == 2)
{
if (nWidth != 512 || nHeight != 512)
return -1;
fopen_s(&bmpFile, InputFile2.c_str(), "rb");
}
else if (nImage == 3)
{
if (nWidth != 500 || nHeight != 383)
return -1;
fopen_s(&bmpFile, InputFile3.c_str(), "rb");
}
else if (nImage == 4)
{
if (nWidth != 500 || nHeight != 569)
return -1;
fopen_s(&bmpFile, InputFile4.c_str(), "rb");
}
else
{
printf ("Input file load failed.\n");
return -1;
}
if (bmpFile == NULL)
{
printf ("Input file load failed.\n");
return -1;
}
nSize = fread(pImage, 1, nWidth * nHeight, bmpFile);
if (nSize < nWidth * nHeight)
{
printf ("Input file load failed.\n");
fclose(bmpFile);
return -1;
}
fclose(bmpFile);
printf ("Input file load succeeded.\n");
return 0;
}
// *****************************************************************************
// main watershed segmentation example function
// -----------------------------------------------------------------------------
int main(int argc, const char *argv[])
{
int pidx;
if ((pidx = findParamIndex(argv, argc, "-h")) != -1 ||
(pidx = findParamIndex(argv, argc, "--help")) != -1) {
std::cout << "Usage: " << argv[0]
<< "[-b number-of-batch]\n";
std::cout << "Parameters: " << std::endl;
std::cout << "\tnumber-of-batch\t:\tUse number of batch to process [default 3]" << std::endl;
return EXIT_SUCCESS;
}
image_watershedsegmentation_params_t params;
params.numofbatch = 3;
if ((pidx = findParamIndex(argv, argc, "-b")) != -1) {
params.numofbatch = std::atoi(argv[pidx + 1]);
}
int aSegmentationScratchBufferSize[NUMBER_OF_IMAGES];
int aSegmentLabelsOutputBufferSize[NUMBER_OF_IMAGES];
cudaError_t cudaError;
NppStatus nppStatus;
NppStreamContext nppStreamCtx;
FILE * bmpFile;
NppiNorm eNorm = nppiNormInf; // default to 8 way neighbor search
for (int j = 0; j < NUMBER_OF_IMAGES; j++)
{
pInputImageDev[j] = 0;
pInputImageHost[j] = 0;
pSegmentationScratchBufferDev[j] = 0;
pSegmentLabelsOutputBufferDev[j] = 0;
pSegmentLabelsOutputBufferHost[j] = 0;
pSegmentsDev[j] = 0;
pSegmentsHost[j] = 0;
}
nppStreamCtx.hStream = 0; // The NULL stream by default, set this to whatever your stream ID is if not the NULL stream.
cudaError = cudaGetDevice(&nppStreamCtx.nCudaDeviceId);
if (cudaError != cudaSuccess)
{
printf("CUDA error: no devices supporting CUDA.\n");
return NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY;
}
const NppLibraryVersion *libVer = nppGetLibVersion();
printf("NPP Library Version %d.%d.%d\n", libVer->major, libVer->minor, libVer->build);
int driverVersion, runtimeVersion;
cudaDriverGetVersion(&driverVersion);
cudaRuntimeGetVersion(&runtimeVersion);
printf("CUDA Driver Version: %d.%d\n", driverVersion/1000, (driverVersion%100)/10);
printf("CUDA Runtime Version: %d.%d\n\n", runtimeVersion/1000, (runtimeVersion%100)/10);
cudaError = cudaDeviceGetAttribute(&nppStreamCtx.nCudaDevAttrComputeCapabilityMajor,
cudaDevAttrComputeCapabilityMajor,
nppStreamCtx.nCudaDeviceId);
if (cudaError != cudaSuccess)
return NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY;
cudaError = cudaDeviceGetAttribute(&nppStreamCtx.nCudaDevAttrComputeCapabilityMinor,
cudaDevAttrComputeCapabilityMinor,
nppStreamCtx.nCudaDeviceId);
if (cudaError != cudaSuccess)
return NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY;
cudaError = cudaStreamGetFlags(nppStreamCtx.hStream, &nppStreamCtx.nStreamFlags);
cudaDeviceProp oDeviceProperties;
cudaError = cudaGetDeviceProperties(&oDeviceProperties, nppStreamCtx.nCudaDeviceId);
nppStreamCtx.nMultiProcessorCount = oDeviceProperties.multiProcessorCount;
nppStreamCtx.nMaxThreadsPerMultiProcessor = oDeviceProperties.maxThreadsPerMultiProcessor;
nppStreamCtx.nMaxThreadsPerBlock = oDeviceProperties.maxThreadsPerBlock;
nppStreamCtx.nSharedMemPerBlock = oDeviceProperties.sharedMemPerBlock;
NppiSize oSizeROI[NUMBER_OF_IMAGES];
for (int nImage = 0; nImage < params.numofbatch; nImage++)
{
if (nImage == 0)
{
oSizeROI[nImage].width = 512;
oSizeROI[nImage].height = 512;
}
else if (nImage == 1)
{
oSizeROI[nImage].width = 512;
oSizeROI[nImage].height = 512;
}
else if (nImage == 2)
{
oSizeROI[nImage].width = 512;
oSizeROI[nImage].height = 512;
}
else if (nImage == 3)
{
oSizeROI[nImage].width = 500;
oSizeROI[nImage].height = 383;
}
else if (nImage == 4)
{
oSizeROI[nImage].width = 500;
oSizeROI[nImage].height = 569;
}
// cudaMallocPitch OR cudaMalloc can be used here, in this sample case width == pitch.
cudaError = cudaMalloc ((void**)&pInputImageDev[nImage], oSizeROI[nImage].width * sizeof(Npp8u) * oSizeROI[nImage].height);
if (cudaError != cudaSuccess)
return NPP_MEMORY_ALLOCATION_ERR;
cudaError = cudaMalloc ((void**)&pSegmentsDev[nImage], oSizeROI[nImage].width * sizeof(Npp32u) * oSizeROI[nImage].height);
if (cudaError != cudaSuccess)
return NPP_MEMORY_ALLOCATION_ERR;
pInputImageHost[nImage] = reinterpret_cast<Npp8u *>(malloc(oSizeROI[nImage].width * sizeof(Npp8u) * oSizeROI[nImage].height));
pSegmentsHost[nImage] = reinterpret_cast<Npp8u *>(malloc(oSizeROI[nImage].width * sizeof(Npp32u) * oSizeROI[nImage].height));
nppStatus = nppiSegmentWatershedGetBufferSize_8u_C1R(oSizeROI[nImage], &aSegmentationScratchBufferSize[nImage]);
cudaError = cudaMalloc ((void **)&pSegmentationScratchBufferDev[nImage], aSegmentationScratchBufferSize[nImage]);
if (cudaError != cudaSuccess)
return NPP_MEMORY_ALLOCATION_ERR;
// Output label marker buffers are only needed if you want to same the generated segmentation labels, they ARE compatible with NPP UF generated labels.
// Requesting segmentation output may slightly decrease segmentation function performance. Regardless of the pitch of the segmentation image
// the segment labels output buffer will have a pitch of oSizeROI[nImage].width * sizeof(Npp32u).
aSegmentLabelsOutputBufferSize[nImage] = oSizeROI[nImage].width * sizeof(Npp32u) * oSizeROI[nImage].height;
cudaError = cudaMalloc ((void **)&pSegmentLabelsOutputBufferDev[nImage], aSegmentLabelsOutputBufferSize[nImage]);
if (cudaError != cudaSuccess)
return NPP_MEMORY_ALLOCATION_ERR;
pSegmentLabelsOutputBufferHost[nImage] = reinterpret_cast<Npp32u *>(malloc(oSizeROI[nImage].width * sizeof(Npp32u) * oSizeROI[nImage].height));
if (loadRaw8BitImage(pInputImageHost[nImage], oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].height, nImage) == 0)
{
cudaError = cudaMemcpy2DAsync(pInputImageDev[nImage], oSizeROI[nImage].width * sizeof(Npp8u), pInputImageHost[nImage],
oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].height,
cudaMemcpyHostToDevice, nppStreamCtx.hStream);
// Make a second copy of the unaltered input image since this function works in place and we want to reuse the input image multiple times.
cudaError = cudaMemcpy2DAsync(pSegmentsDev[nImage], oSizeROI[nImage].width * sizeof(Npp8u), pInputImageHost[nImage],
oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].height,
cudaMemcpyHostToDevice, nppStreamCtx.hStream);
nppStatus = nppiSegmentWatershed_8u_C1IR_Ctx(pSegmentsDev[nImage], oSizeROI[nImage].width * sizeof(Npp8u),
pSegmentLabelsOutputBufferDev[nImage], oSizeROI[nImage].width * sizeof(Npp32u), eNorm,
NPP_WATERSHED_SEGMENT_BOUNDARIES_NONE, oSizeROI[nImage], pSegmentationScratchBufferDev[nImage], nppStreamCtx);
if (nppStatus != NPP_SUCCESS)
{
if (nImage == 0)
printf("Lena segments 8Way 512x512 8u failed.\n");
else if (nImage == 1)
printf("CT skull segments 8Way 512x512 8u failed.\n");
else if (nImage == 2)
printf("Rocks segments 8Way 512x512 8u failed.\n");
else if (nImage == 3)
printf("coins segments 8Way 500x383 8u failed.\n");
else if (nImage == 4)
printf("coins overlay segments 8Way 500x569 8u failed.\n");
tearDown();
return -1;
}
// Now compress the label markers output to make them easier to view.
int nCompressedLabelsScratchBufferSize;
Npp8u * pCompressedLabelsScratchBufferDev;
nppStatus = nppiCompressMarkerLabelsGetBufferSize_32u_C1R(oSizeROI[nImage].width * oSizeROI[nImage].height, &nCompressedLabelsScratchBufferSize);
if (nppStatus != NPP_NO_ERROR)
return nppStatus;
cudaError = cudaMalloc ((void **)&pCompressedLabelsScratchBufferDev, nCompressedLabelsScratchBufferSize);
if (cudaError != cudaSuccess)
return NPP_MEMORY_ALLOCATION_ERR;
int nCompressedLabelCount = 0;
nppStatus = nppiCompressMarkerLabelsUF_32u_C1IR(pSegmentLabelsOutputBufferDev[nImage], oSizeROI[nImage].width * sizeof(Npp32u), oSizeROI[nImage],
oSizeROI[nImage].width * oSizeROI[nImage].height, &nCompressedLabelCount,
pCompressedLabelsScratchBufferDev);
if (nppStatus != NPP_SUCCESS)
{
if (nImage == 0)
printf("Lena_CompressedLabelMarkersUF_8Way_512x512_32u failed.\n");
else if (nImage == 1)
printf("CT_Skull_CompressedLabelMarkersUF_8Way_512x512_32u failed.\n");
else if (nImage == 2)
printf("Rocks_CompressedLabelMarkersUF_8Way_512x512_32u failed.\n");
else if (nImage == 3)
printf("coins_CompressedLabelMarkersUF_8Way_500x383_32u failed.\n");
else if (nImage == 4)
printf("coins_CompressedLabelMarkersUF_8Way_500x569_32u failed.\n");
tearDown();
return -1;
}
// Copy segmented image to host
cudaError = cudaMemcpy2DAsync(pSegmentsHost[nImage], oSizeROI[nImage].width * sizeof(Npp8u),
pSegmentsDev[nImage], oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].height,
cudaMemcpyDeviceToHost, nppStreamCtx.hStream);
// Copy segment labels image to host
cudaError = cudaMemcpy2DAsync(pSegmentLabelsOutputBufferHost[nImage], oSizeROI[nImage].width * sizeof(Npp32u),
pSegmentLabelsOutputBufferDev[nImage], oSizeROI[nImage].width * sizeof(Npp32u), oSizeROI[nImage].width * sizeof(Npp32u), oSizeROI[nImage].height,
cudaMemcpyDeviceToHost, nppStreamCtx.hStream);
// Wait host image read backs to complete, not necessary if no need to synchronize
if ((cudaError = cudaStreamSynchronize(nppStreamCtx.hStream)) != cudaSuccess)
{
printf ("Post segmentation cudaStreamSynchronize failed\n");
tearDown();
return -1;
}
// Free single image scratch buffer
cudaFree(pCompressedLabelsScratchBufferDev);
// Save default segments file.
if (nImage == 0)
fopen_s(&bmpFile, SegmentsOutputFile0.c_str(), "wb");
else if (nImage == 1)
fopen_s(&bmpFile, SegmentsOutputFile1.c_str(), "wb");
else if (nImage == 2)
fopen_s(&bmpFile, SegmentsOutputFile2.c_str(), "wb");
else if (nImage == 3)
fopen_s(&bmpFile, SegmentsOutputFile3.c_str(), "wb");
else if (nImage == 4)
fopen_s(&bmpFile, SegmentsOutputFile4.c_str(), "wb");
if (bmpFile == NULL)
return -1;
size_t nSize = 0;
for (int j = 0; j < oSizeROI[nImage].height; j++)
{
nSize += fwrite(&pSegmentsHost[nImage][j * oSizeROI[nImage].width], sizeof(Npp8u), oSizeROI[nImage].width, bmpFile);
}
fclose(bmpFile);
if (nImage == 0)
printf("Lena_Segments_8Way_512x512_8u succeeded.\n");
else if (nImage == 1)
printf("CT_Skull_Segments_8Way_512x512_8u succeeded.\n");
else if (nImage == 2)
printf("Rocks_Segments_8Way_512x512_8u succeeded.\n");
else if (nImage == 3)
printf("coins_Segments_8Way_500x383_8u succeeded.\n");
else if (nImage == 4)
printf("coins_overlay_Segments_8Way_500x569_8u succeeded.\n");
// Save segment labels file.
if (nImage == 0)
fopen_s(&bmpFile, CompressedSegmentLabelsOutputFile0.c_str(), "wb");
else if (nImage == 1)
fopen_s(&bmpFile, CompressedSegmentLabelsOutputFile1.c_str(), "wb");
else if (nImage == 2)
fopen_s(&bmpFile, CompressedSegmentLabelsOutputFile2.c_str(), "wb");
else if (nImage == 3)
fopen_s(&bmpFile, CompressedSegmentLabelsOutputFile3.c_str(), "wb");
else if (nImage == 4)
fopen_s(&bmpFile, CompressedSegmentLabelsOutputFile4.c_str(), "wb");
if (bmpFile == NULL)
return -1;
nSize = 0;
for (int j = 0; j < oSizeROI[nImage].height; j++)
{
nSize += fwrite(&pSegmentLabelsOutputBufferHost[nImage][j * oSizeROI[nImage].width], sizeof(Npp32u), oSizeROI[nImage].width, bmpFile);
}
fclose(bmpFile);
if (nImage == 0)
printf("Lena_CompressedSegmentLabels_8Way_512x512_32u succeeded.\n");
else if (nImage == 1)
printf("CT_Skull_CompressedSegmentLabels_8Way_512x512_32u succeeded.\n");
else if (nImage == 2)
printf("Rocks_CompressedSegmentLabels_8Way_512x512_32u succeeded.\n");
else if (nImage == 3)
printf("coins_CompressedSegmentLabels_8Way_500x383_32u succeeded.\n");
else if (nImage == 4)
printf("coins_overlay_CompressedSegmentLabels_8Way_500x569_32u succeeded.\n");
// Now generate a segment boundaries only output image
// Make a second copy of the unaltered input image since this function works in place and we want to reuse the input image multiple times.
cudaError = cudaMemcpy2DAsync(pSegmentsDev[nImage], oSizeROI[nImage].width * sizeof(Npp8u), pInputImageHost[nImage],
oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].height,
cudaMemcpyHostToDevice, nppStreamCtx.hStream);
// We already generated segment labels images to skip that this time
nppStatus = nppiSegmentWatershed_8u_C1IR_Ctx(pSegmentsDev[nImage], oSizeROI[nImage].width * sizeof(Npp8u),
0, 0, eNorm,
NPP_WATERSHED_SEGMENT_BOUNDARIES_ONLY, oSizeROI[nImage], pSegmentationScratchBufferDev[nImage], nppStreamCtx);
if (nppStatus != NPP_SUCCESS)
{
if (nImage == 0)
printf("Lena segment boundaries 8Way 512x512 8u failed.\n");
else if (nImage == 1)
printf("CT skull segment boundaries 8Way 512x512 8u failed.\n");
else if (nImage == 2)
printf("Rocks segment boundaries 8Way 512x512 8u failed.\n");
else if (nImage == 3)
printf("coins segment boundaries 8Way 500x383 8u failed.\n");
else if (nImage == 4)
printf("coins overlay segment boundaries 8Way 500x569 8u failed.\n");
tearDown();
return -1;
}
// Copy segment boundaries image to host
cudaError = cudaMemcpy2DAsync(pSegmentsHost[nImage], oSizeROI[nImage].width * sizeof(Npp8u),
pSegmentsDev[nImage], oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].height,
cudaMemcpyDeviceToHost, nppStreamCtx.hStream);
// Wait host image read backs to complete, not necessary if no need to synchronize
if ((cudaError = cudaStreamSynchronize(nppStreamCtx.hStream)) != cudaSuccess)
{
printf ("Post segmentation cudaStreamSynchronize failed\n");
tearDown();
return -1;
}
if (nImage == 0)
fopen_s(&bmpFile, SegmentBoundariesOutputFile0.c_str(), "wb");
else if (nImage == 1)
fopen_s(&bmpFile, SegmentBoundariesOutputFile1.c_str(), "wb");
else if (nImage == 2)
fopen_s(&bmpFile, SegmentBoundariesOutputFile2.c_str(), "wb");
else if (nImage == 3)
fopen_s(&bmpFile, SegmentBoundariesOutputFile3.c_str(), "wb");
else if (nImage == 4)
fopen_s(&bmpFile, SegmentBoundariesOutputFile4.c_str(), "wb");
if (bmpFile == NULL)
return -1;
nSize = 0;
for (int j = 0; j < oSizeROI[nImage].height; j++)
{
nSize += fwrite(&pSegmentsHost[nImage][j * oSizeROI[nImage].width], sizeof(Npp8u), oSizeROI[nImage].width, bmpFile);
}
fclose(bmpFile);
if (nImage == 0)
printf("Lena_SegmentBoundaries_8Way_512x512_8u succeeded.\n");
else if (nImage == 1)
printf("CT_Skull_SegmentBoundaries_8Way_512x512_8u succeeded.\n");
else if (nImage == 2)
printf("Rocks_SegmentBoundaries_8Way_512x512_8u succeeded.\n");
else if (nImage == 3)
printf("coins_SegmentBoundaries_8Way_500x383_8u succeeded.\n");
else if (nImage == 4)
printf("coins_overlay_SegmentBoundaries_8Way_500x569_8u succeeded.\n");
// Now generate a segmented with contrasting boundaries output image
// Make a second copy of the unaltered input image since this function works in place and we want to reuse the input image multiple times.
cudaError = cudaMemcpy2DAsync(pSegmentsDev[nImage], oSizeROI[nImage].width * sizeof(Npp8u), pInputImageHost[nImage],
oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].height,
cudaMemcpyHostToDevice, nppStreamCtx.hStream);
// We already generated segment labels images to skip that this time
nppStatus = nppiSegmentWatershed_8u_C1IR_Ctx(pSegmentsDev[nImage], oSizeROI[nImage].width * sizeof(Npp8u),
0, 0, eNorm,
NPP_WATERSHED_SEGMENT_BOUNDARIES_CONTRAST, oSizeROI[nImage], pSegmentationScratchBufferDev[nImage], nppStreamCtx);
if (nppStatus != NPP_SUCCESS)
{
if (nImage == 0)
printf("Lena segments with contrasting boundaries 8Way 512x512 8u failed.\n");
else if (nImage == 1)
printf("CT skull segments with contrasting boundaries 8Way 512x512 8u failed.\n");
else if (nImage == 2)
printf("Rocks segments with contrasting boundaries 8Way 512x512 8u failed.\n");
else if (nImage == 3)
printf("coins segments with contrasting boundaries 8Way 500x383 8u failed.\n");
else if (nImage == 4)
printf("coins overlay segments with contrasting boundaries 8Way 500x569 8u failed.\n");
tearDown();
return -1;
}
// Copy segment boundaries image to host
cudaError = cudaMemcpy2DAsync(pSegmentsHost[nImage], oSizeROI[nImage].width * sizeof(Npp8u),
pSegmentsDev[nImage], oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].width * sizeof(Npp8u), oSizeROI[nImage].height,
cudaMemcpyDeviceToHost, nppStreamCtx.hStream);
// Wait host image read backs to complete, not necessary if no need to synchronize
if ((cudaError = cudaStreamSynchronize(nppStreamCtx.hStream)) != cudaSuccess)
{
printf ("Post segmentation cudaStreamSynchronize failed\n");
tearDown();
return -1;
}
if (nImage == 0)
fopen_s(&bmpFile, SegmentsWithContrastingBoundariesOutputFile0.c_str(), "wb");
else if (nImage == 1)
fopen_s(&bmpFile, SegmentsWithContrastingBoundariesOutputFile1.c_str(), "wb");
else if (nImage == 2)
fopen_s(&bmpFile, SegmentsWithContrastingBoundariesOutputFile2.c_str(), "wb");
else if (nImage == 3)
fopen_s(&bmpFile, SegmentsWithContrastingBoundariesOutputFile3.c_str(), "wb");
else if (nImage == 4)
fopen_s(&bmpFile, SegmentsWithContrastingBoundariesOutputFile4.c_str(), "wb");
if (bmpFile == NULL)
return -1;
nSize = 0;
for (int j = 0; j < oSizeROI[nImage].height; j++)
{
nSize += fwrite(&pSegmentsHost[nImage][j * oSizeROI[nImage].width], sizeof(Npp8u), oSizeROI[nImage].width, bmpFile);
}
fclose(bmpFile);
if (nImage == 0)
printf("Lena_SegmentsWithContrastingBoundaries_8Way_512x512_8u succeeded.\n");
else if (nImage == 1)
printf("CT_Skull_SegmentsWithContrastingBoundaries_8Way_512x512_8u succeeded.\n");
else if (nImage == 2)
printf("Rocks_SegmentsWithContrastingBoundaries_8Way_512x512_8u succeeded.\n");
else if (nImage == 3)
printf("coins_SegmentsWithContrastingBoundaries_8Way_500x383_8u succeeded.\n");
else if (nImage == 4)
printf("coins_overlay_SegmentsWithContrastingBoundaries_8Way_500x569_8u succeeded.\n");
}
}
tearDown();
return 0;
}