-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelliptic.py
94 lines (82 loc) · 3.39 KB
/
elliptic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Elliptic Curve Implementation
import collections
Coord = collections.namedtuple("Coord", ["x", "y"])
def inv(n, q):
"""
Find the inverse on n modulus q
"""
return egcd(n, q)[0] % q
def egcd(a, b):
"""
This function performs an extended GCD according to euclid's algorithm.
It finds a pair (s, t) such that a*s + b*t == gcd
"""
s0, s1, t0, t1 = 1, 0, 0, 1
while b > 0:
q, r = divmod(a, b)
a, b = b, r
s0, s1, t0, t1 = s1, s0 - q * s1, t1, t0 - q * t1
return s0, t0, a
class EC(object):
def __init__(self, a, b, Prime, G, order):
"""
Initialize an Elliptic Curve, Defined as:
(y^2 = x^3 + ax + b) modulus Prime
"""
assert 0 <= a and a < Prime and 0 <= b and b < Prime and Prime > 2
assert (4 * (a ** 3) + 27 * (b ** 2)) % Prime != 0
self.a = a # Coefficient of x
self.b = b # Constant term
self.Prime = Prime # Large prime number - limiting the finite field
self.G = G # Generator point / Base point
self.zero = Coord(0, 0) # Zero point
# Order -
# An elliptic curve defined over a finite field has a finite number of points.
# The number of points in a group is called the order of the group.
self.order = order
def add(self, p1: Coord, p2: Coord):
"""
This function returns the addition of two points on the elliptic curve.
For point addition, we take two points on the elliptic curve and then add them together (R=P+Q).
"""
# Base Cases
# Adding a point to (0, 0)
if p1 == self.zero:
return p2
if p2 == self.zero:
return p1
# Adding inverse points
if p1.x == p2.x and (p1.y != p2.y or p1.y == 0):
return self.zero
# Calculating the slope (Self-Addition)
# ((3x^2 + a) / 2y) mod Prime
if p1.x == p2.x:
slope = (3 * p1.x * p1.x + self.a) * \
inv(2 * p1.y, self.Prime) % self.Prime
# General Case
# So if we use x^3+ax+b (mod p),
# and we have two points P (x1,y1) and Q(x2,y2) that we want to add,
# we calculate the gradient between the points: s=(y1−y2)/(x1−x2)
# Then to determine the new point R(x3,y3), we use: x=s^2−x1−x2, y=s(x1−x2)−y1
else:
temp1 = (p2.y - p1.y)
temp2 = inv(p2.x - p1.x, self.Prime)
slope = temp1 * temp2 % self.Prime
x = (slope * slope - p1.x - p2.x) % self.Prime
y = (slope * (p1.x - x) - p1.y) % self.Prime
return Coord(x, y)
def mul(self, Point, n):
"""
This function returns the nth multiplication of a point on the elliptic curve.
The straightforward way of computing a point multiplication is through repeated addition.
"""
result = self.zero
addPoint = Point
# According to Double-and-Add algorithm to Point Multiplication
# As described in pseudo-code in https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
while n > 0:
if n & 1 == 1:
result = self.add(result, addPoint)
addPoint = self.add(addPoint, addPoint)
n = n >> 1
return result