-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
124 lines (101 loc) · 4.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import sys
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.utils
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
from model import NetworkCIFAR as Network
import genotypes
import utils
parser = argparse.ArgumentParser("cifar10")
parser.add_argument(
"--data", type=str, default="../data", help="location of the data corpus"
)
parser.add_argument("--batchsz", type=int, default=96, help="batch size")
parser.add_argument("--lr", type=float, default=0.025, help="init learning rate")
parser.add_argument("--momentum", type=float, default=0.9, help="momentum")
parser.add_argument("--wd", type=float, default=3e-4, help="weight decay")
parser.add_argument("--report_freq", type=float, default=50, help="report frequency")
parser.add_argument("--gpu", type=int, default=0, help="gpu device id")
parser.add_argument("--epochs", type=int, default=600, help="num of training epochs")
parser.add_argument("--init_ch", type=int, default=36, help="num of init channels")
parser.add_argument("--layers", type=int, default=20, help="total number of layers")
parser.add_argument(
"--model_path", type=str, default="saved_models", help="path to save the model"
)
parser.add_argument(
"--auxiliary", action="store_true", default=False, help="use auxiliary tower"
)
parser.add_argument(
"--auxiliary_weight", type=float, default=0.4, help="weight for auxiliary loss"
)
parser.add_argument("--cutout", action="store_true", default=False, help="use cutout")
parser.add_argument("--cutout_length", type=int, default=16, help="cutout length")
parser.add_argument(
"--drop_path_prob", type=float, default=0.2, help="drop path probability"
)
parser.add_argument(
"--exp_path", type=str, default="exp/cifar10", help="experiment name"
)
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument(
"--arch", type=str, default="DARTS", help="which architecture to use"
)
parser.add_argument("--grad_clip", type=float, default=5, help="gradient clipping")
args = parser.parse_args()
genotype = torch.load("genotype.t7")["genotype"]
model = Network(args.init_ch, 10, args.layers, args.auxiliary, genotype).cuda()
print(f"[*] Number of parameters: {utils.count_parameters_in_MB(model)}")
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(
model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.wd
)
train_transform, valid_transform = utils.data_transforms_cifar10(args)
train_data = dset.CIFAR10(
root=args.data, train=True, download=True, transform=train_transform
)
valid_data = dset.CIFAR10(
root=args.data, train=False, download=True, transform=valid_transform
)
train_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batchsz, shuffle=True, pin_memory=True, num_workers=2
)
valid_queue = torch.utils.data.DataLoader(
valid_data, batch_size=args.batchsz, shuffle=False, pin_memory=True, num_workers=2
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))
def train(train_loader, model, criterion, optimizer):
model.train()
for x, target in train_loader:
x = x.cuda()
target = target.cuda(non_blocking=True)
optimizer.zero_grad()
logits, logits_aux = model(x)
loss = criterion(logits, target)
if args.auxiliary:
loss_aux = criterion(logits_aux, target)
loss += args.auxiliary_weight * loss_aux
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
def infer(valid_loader, model):
model.eval()
correct = 0
total = 0
for x, target in valid_loader:
x = x.cuda()
target = target.cuda(non_blocking=True)
with torch.no_grad():
logits, _ = model(x)
correct += (logits.argmax(dim=1) == target).float().sum().item()
total += x.size(0)
acc = correct / total * 100
print(f"[*] Validation Acc.: {acc}")
for epoch in range(args.epochs):
scheduler.step()
model.drop_path_prob = args.drop_path_prob * epoch / args.epochs
train(train_queue, model, criterion, optimizer)
infer(valid_queue, model)