|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "18373d59", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "\n", |
| 11 | + "from sklearn import svm, datasets\n", |
| 12 | + "iris = datasets.load_iris()" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": 2, |
| 18 | + "id": "7149cb62", |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [ |
| 21 | + { |
| 22 | + "data": { |
| 23 | + "text/html": [ |
| 24 | + "<div>\n", |
| 25 | + "<style scoped>\n", |
| 26 | + " .dataframe tbody tr th:only-of-type {\n", |
| 27 | + " vertical-align: middle;\n", |
| 28 | + " }\n", |
| 29 | + "\n", |
| 30 | + " .dataframe tbody tr th {\n", |
| 31 | + " vertical-align: top;\n", |
| 32 | + " }\n", |
| 33 | + "\n", |
| 34 | + " .dataframe thead th {\n", |
| 35 | + " text-align: right;\n", |
| 36 | + " }\n", |
| 37 | + "</style>\n", |
| 38 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 39 | + " <thead>\n", |
| 40 | + " <tr style=\"text-align: right;\">\n", |
| 41 | + " <th></th>\n", |
| 42 | + " <th>sepal length (cm)</th>\n", |
| 43 | + " <th>sepal width (cm)</th>\n", |
| 44 | + " <th>petal length (cm)</th>\n", |
| 45 | + " <th>petal width (cm)</th>\n", |
| 46 | + " <th>flower</th>\n", |
| 47 | + " </tr>\n", |
| 48 | + " </thead>\n", |
| 49 | + " <tbody>\n", |
| 50 | + " <tr>\n", |
| 51 | + " <th>47</th>\n", |
| 52 | + " <td>4.6</td>\n", |
| 53 | + " <td>3.2</td>\n", |
| 54 | + " <td>1.4</td>\n", |
| 55 | + " <td>0.2</td>\n", |
| 56 | + " <td>setosa</td>\n", |
| 57 | + " </tr>\n", |
| 58 | + " <tr>\n", |
| 59 | + " <th>48</th>\n", |
| 60 | + " <td>5.3</td>\n", |
| 61 | + " <td>3.7</td>\n", |
| 62 | + " <td>1.5</td>\n", |
| 63 | + " <td>0.2</td>\n", |
| 64 | + " <td>setosa</td>\n", |
| 65 | + " </tr>\n", |
| 66 | + " <tr>\n", |
| 67 | + " <th>49</th>\n", |
| 68 | + " <td>5.0</td>\n", |
| 69 | + " <td>3.3</td>\n", |
| 70 | + " <td>1.4</td>\n", |
| 71 | + " <td>0.2</td>\n", |
| 72 | + " <td>setosa</td>\n", |
| 73 | + " </tr>\n", |
| 74 | + " <tr>\n", |
| 75 | + " <th>50</th>\n", |
| 76 | + " <td>7.0</td>\n", |
| 77 | + " <td>3.2</td>\n", |
| 78 | + " <td>4.7</td>\n", |
| 79 | + " <td>1.4</td>\n", |
| 80 | + " <td>versicolor</td>\n", |
| 81 | + " </tr>\n", |
| 82 | + " <tr>\n", |
| 83 | + " <th>51</th>\n", |
| 84 | + " <td>6.4</td>\n", |
| 85 | + " <td>3.2</td>\n", |
| 86 | + " <td>4.5</td>\n", |
| 87 | + " <td>1.5</td>\n", |
| 88 | + " <td>versicolor</td>\n", |
| 89 | + " </tr>\n", |
| 90 | + " <tr>\n", |
| 91 | + " <th>...</th>\n", |
| 92 | + " <td>...</td>\n", |
| 93 | + " <td>...</td>\n", |
| 94 | + " <td>...</td>\n", |
| 95 | + " <td>...</td>\n", |
| 96 | + " <td>...</td>\n", |
| 97 | + " </tr>\n", |
| 98 | + " <tr>\n", |
| 99 | + " <th>145</th>\n", |
| 100 | + " <td>6.7</td>\n", |
| 101 | + " <td>3.0</td>\n", |
| 102 | + " <td>5.2</td>\n", |
| 103 | + " <td>2.3</td>\n", |
| 104 | + " <td>virginica</td>\n", |
| 105 | + " </tr>\n", |
| 106 | + " <tr>\n", |
| 107 | + " <th>146</th>\n", |
| 108 | + " <td>6.3</td>\n", |
| 109 | + " <td>2.5</td>\n", |
| 110 | + " <td>5.0</td>\n", |
| 111 | + " <td>1.9</td>\n", |
| 112 | + " <td>virginica</td>\n", |
| 113 | + " </tr>\n", |
| 114 | + " <tr>\n", |
| 115 | + " <th>147</th>\n", |
| 116 | + " <td>6.5</td>\n", |
| 117 | + " <td>3.0</td>\n", |
| 118 | + " <td>5.2</td>\n", |
| 119 | + " <td>2.0</td>\n", |
| 120 | + " <td>virginica</td>\n", |
| 121 | + " </tr>\n", |
| 122 | + " <tr>\n", |
| 123 | + " <th>148</th>\n", |
| 124 | + " <td>6.2</td>\n", |
| 125 | + " <td>3.4</td>\n", |
| 126 | + " <td>5.4</td>\n", |
| 127 | + " <td>2.3</td>\n", |
| 128 | + " <td>virginica</td>\n", |
| 129 | + " </tr>\n", |
| 130 | + " <tr>\n", |
| 131 | + " <th>149</th>\n", |
| 132 | + " <td>5.9</td>\n", |
| 133 | + " <td>3.0</td>\n", |
| 134 | + " <td>5.1</td>\n", |
| 135 | + " <td>1.8</td>\n", |
| 136 | + " <td>virginica</td>\n", |
| 137 | + " </tr>\n", |
| 138 | + " </tbody>\n", |
| 139 | + "</table>\n", |
| 140 | + "<p>103 rows × 5 columns</p>\n", |
| 141 | + "</div>" |
| 142 | + ], |
| 143 | + "text/plain": [ |
| 144 | + " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \\\n", |
| 145 | + "47 4.6 3.2 1.4 0.2 \n", |
| 146 | + "48 5.3 3.7 1.5 0.2 \n", |
| 147 | + "49 5.0 3.3 1.4 0.2 \n", |
| 148 | + "50 7.0 3.2 4.7 1.4 \n", |
| 149 | + "51 6.4 3.2 4.5 1.5 \n", |
| 150 | + ".. ... ... ... ... \n", |
| 151 | + "145 6.7 3.0 5.2 2.3 \n", |
| 152 | + "146 6.3 2.5 5.0 1.9 \n", |
| 153 | + "147 6.5 3.0 5.2 2.0 \n", |
| 154 | + "148 6.2 3.4 5.4 2.3 \n", |
| 155 | + "149 5.9 3.0 5.1 1.8 \n", |
| 156 | + "\n", |
| 157 | + " flower \n", |
| 158 | + "47 setosa \n", |
| 159 | + "48 setosa \n", |
| 160 | + "49 setosa \n", |
| 161 | + "50 versicolor \n", |
| 162 | + "51 versicolor \n", |
| 163 | + ".. ... \n", |
| 164 | + "145 virginica \n", |
| 165 | + "146 virginica \n", |
| 166 | + "147 virginica \n", |
| 167 | + "148 virginica \n", |
| 168 | + "149 virginica \n", |
| 169 | + "\n", |
| 170 | + "[103 rows x 5 columns]" |
| 171 | + ] |
| 172 | + }, |
| 173 | + "execution_count": 2, |
| 174 | + "metadata": {}, |
| 175 | + "output_type": "execute_result" |
| 176 | + } |
| 177 | + ], |
| 178 | + "source": [ |
| 179 | + "import pandas as pd\n", |
| 180 | + "df = pd.DataFrame(iris.data,columns=iris.feature_names)\n", |
| 181 | + "df['flower'] = iris.target\n", |
| 182 | + "df['flower'] = df['flower'].apply(lambda x: iris.target_names[x])\n", |
| 183 | + "df[47:150]" |
| 184 | + ] |
| 185 | + }, |
| 186 | + { |
| 187 | + "cell_type": "code", |
| 188 | + "execution_count": 3, |
| 189 | + "id": "01221468", |
| 190 | + "metadata": {}, |
| 191 | + "outputs": [], |
| 192 | + "source": [ |
| 193 | + "from sklearn.model_selection import train_test_split\n", |
| 194 | + "X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3)" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": 4, |
| 200 | + "id": "85bd2f18", |
| 201 | + "metadata": {}, |
| 202 | + "outputs": [ |
| 203 | + { |
| 204 | + "data": { |
| 205 | + "text/plain": [ |
| 206 | + "0.9777777777777777" |
| 207 | + ] |
| 208 | + }, |
| 209 | + "execution_count": 4, |
| 210 | + "metadata": {}, |
| 211 | + "output_type": "execute_result" |
| 212 | + } |
| 213 | + ], |
| 214 | + "source": [ |
| 215 | + "\n", |
| 216 | + "model = svm.SVC(kernel='rbf',C=30,gamma='auto')\n", |
| 217 | + "model.fit(X_train,y_train)\n", |
| 218 | + "model.score(X_test, y_test)" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "cell_type": "code", |
| 223 | + "execution_count": 5, |
| 224 | + "id": "0d7f7aeb", |
| 225 | + "metadata": {}, |
| 226 | + "outputs": [ |
| 227 | + { |
| 228 | + "ename": "NameError", |
| 229 | + "evalue": "name 'cross_val_score' is not defined", |
| 230 | + "output_type": "error", |
| 231 | + "traceback": [ |
| 232 | + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", |
| 233 | + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", |
| 234 | + "\u001b[1;32m<ipython-input-5-044c4818af04>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mcross_val_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msvm\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mSVC\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkernel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'linear'\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mC\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m10\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mgamma\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'auto'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0miris\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0miris\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtarget\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcv\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", |
| 235 | + "\u001b[1;31mNameError\u001b[0m: name 'cross_val_score' is not defined" |
| 236 | + ] |
| 237 | + } |
| 238 | + ], |
| 239 | + "source": [ |
| 240 | + "cross_val_score(svm.SVC(kernel='linear',C=10,gamma='auto'),iris.data, iris.target, cv=5)" |
| 241 | + ] |
| 242 | + }, |
| 243 | + { |
| 244 | + "cell_type": "code", |
| 245 | + "execution_count": 6, |
| 246 | + "id": "67b2e343", |
| 247 | + "metadata": {}, |
| 248 | + "outputs": [ |
| 249 | + { |
| 250 | + "ename": "NameError", |
| 251 | + "evalue": "name 'cross_val_score' is not defined", |
| 252 | + "output_type": "error", |
| 253 | + "traceback": [ |
| 254 | + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", |
| 255 | + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", |
| 256 | + "\u001b[1;32m<ipython-input-6-2ee90564f888>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mcross_val_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msvm\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mSVC\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkernel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'rbf'\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mC\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m10\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mgamma\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'auto'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0miris\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0miris\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtarget\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcv\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", |
| 257 | + "\u001b[1;31mNameError\u001b[0m: name 'cross_val_score' is not defined" |
| 258 | + ] |
| 259 | + } |
| 260 | + ], |
| 261 | + "source": [ |
| 262 | + "cross_val_score(svm.SVC(kernel='rbf',C=10,gamma='auto'),iris.data, iris.target, cv=5)" |
| 263 | + ] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "code", |
| 267 | + "execution_count": null, |
| 268 | + "id": "26102575", |
| 269 | + "metadata": {}, |
| 270 | + "outputs": [], |
| 271 | + "source": [] |
| 272 | + } |
| 273 | + ], |
| 274 | + "metadata": { |
| 275 | + "kernelspec": { |
| 276 | + "display_name": "Python 3", |
| 277 | + "language": "python", |
| 278 | + "name": "python3" |
| 279 | + }, |
| 280 | + "language_info": { |
| 281 | + "codemirror_mode": { |
| 282 | + "name": "ipython", |
| 283 | + "version": 3 |
| 284 | + }, |
| 285 | + "file_extension": ".py", |
| 286 | + "mimetype": "text/x-python", |
| 287 | + "name": "python", |
| 288 | + "nbconvert_exporter": "python", |
| 289 | + "pygments_lexer": "ipython3", |
| 290 | + "version": "3.8.8" |
| 291 | + } |
| 292 | + }, |
| 293 | + "nbformat": 4, |
| 294 | + "nbformat_minor": 5 |
| 295 | +} |
0 commit comments