-
Notifications
You must be signed in to change notification settings - Fork 30
/
Chef and Squares.cpp
80 lines (55 loc) · 2.11 KB
/
Chef and Squares.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/*
Solution by Rahul Surana
***********************************************************
Chef started solving a lot of mathematics problems during the lockdown period.
He was recently trying a problem related to square numbers but couldn't solve it, so needs your help.
He has a positive number N, he wants to find out the smallest perfect square X which when added to N yields another perfect square number.
Input:
First line will contain T, number of testcases. Then the testcases follow.
Each testcase contains of a single line of input, the integer N.
Output:
For each testcase, output in a single line containing the number X. If no such number exists, print −1.
***********************************************************
*/
#include <bits/stdc++.h>
#define ll long long
#define vl vector<ll>
#define vi vector<int>
#define pi pair<int,int>
#define pl pair<ll,ll>
#define all(a) a.begin(),a.end()
#define mem(a,x) memset(a,x,sizeof(a))
#define pb push_back
#define mp make_pair
#define F first
#define S second
#define FOR(i,a) for(int i = 0; i < a; i++)
#define trace(x) cerr<<#x<<" : "<<x<<endl;
#define trace2(x,y) cerr<<#x<<" : "<<x<<" | "<<#y<<" : "<<y<<endl;
#define trace3(x,y,z) cerr<<#x<<" : "<<x<<" | "<<#y<<" : "<<y<<" | "<<#z<<" : "<<z<<endl;
#define fast_io std::ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
#define MOD 1000000007
using namespace std;
bool perfectSquare(ll a){
return ceil(sqrt((double) a)) == floor(sqrt((double) a));
}
int main()
{
fast_io;
int t;
cin >> t;
while(t--) {
ll n;
cin >> n;
ll minsquare = LONG_MAX;
for (int i = 1; i*i < n; i++ ){
if(n%i) continue;
ll b = n/i;
ll x = (b-i)/2;
if((b+i)%2) continue;
minsquare = min(minsquare, x*x);
}
if(minsquare == LONG_MAX) cout << -1 << "\n";
else cout << minsquare << "\n";
}
}