
1 NEED

AB microsimulation travel models are becoming the preferred modeling system for many

agencies’ diverse transportation planning and policy questions. However, many of the AB

models developed to date have been singular development efforts and often suffer from

typical prototype problems such as correctness, stability, and comprehensiveness. As

more agencies adopt AB models, and as AB models move from research into practice,

their implementation and maintenance requires improvement.

Our CI system tests each revision for compatibility in the following regional travel demand

model systems:

• PSRC – Seattle area MPO

• SACOG – Sacramento area MPO

• SFCTA – San Francisco County Transportation Authority

• Nashville Area MPO

• CHCRPA – Chattanooga area MPO

• DVRPC – Philadelphia area MPO

While the core modeling system is similar in each of these regions, it also has a number

of differences, including:

• Interfaces to different network modeling software

• Transit path choice modeling (especially for FTA New Starts applications)

• District to district flow balancing

• Traditional or stop-based transit access modeling

• Multiple spatial zone systems for land use and destinations

• Toll choice modeling

• Park-and-ride lot choice

• Methods for calculating short distance network level-of-service measures

Developing and maintaining a common software platform with these needs is challenging.

EXECUTIVE SUMMARY

• In can be argued that activity-based (AB) travel modeling software has suffered from

prototypical implementation problems such as correctness, stability, and

comprehensiveness, which have helped to slow their industry adoption as well.

• We integrated an open source activity-based (AB) travel modeling systems for multiple

United States transportation planning agencies under a Continuous Integration (CI)

system built upon state-of-the-art software development technologies and practices

• CI is broadly defined as a collaboration practice where team members use a shared

content management repository for tracking issues, software source code management,

and testing. Each software revision is verified by an automated build and test system to

detect problems early, in order to ultimately improve overall quality.

• Developing and maintaining advanced travel modeling tools in this online open source

and collaborative workflow provides everyone in the team (developers, users, etc.) with

a more robust, complete, and collaborative experience.

• We believe the multiple agency CI system developed here is a significant step toward

resolving many of the implementation and maintenance issues that have plagued our

industry.

2 SYSTEM COMPONENTS

Our CI system makes use of a number of online open source technologies such as

Jenkins, GitHub, Slack, Python, and R. Our CI system has three core components:

1. Online project site and repository

2. Continuous Integration server

3. Online agency specific repositories for testing

The entry point to the CI system is an online GitHub repository for the overall open

source AB modeling software, called Daysim. DaySim simulates a day of activity and

travel for each person in each household of a synthetic population distributed throughout

a region. Each region implements a localized version of Daysim for synthesizing travel

diaries, along with a network supply model for estimating network level-of-service. Only

the Daysim travel demand model is managed by the CI system since each region’s

network supply model is implemented with third party technologies.

The Daysim project site does three key things:

1. source code management

2. management of issues for bugs, features, etc.

3. project and software user documentation

Figure 1. Online Daysim Project Site

3 SYSTEM WORKFLOW

To better understand how the collaborative CI system works, two key tasks are illustrated:

Continuous Integration of a Dynamic Multiple

Agency Activity-Based Travel Modeling System

Ben Stabler

Mark Bradley

Peter Andrews

3A ADDING A NEW MODEL

In order to add a new regional model to

system, the following is done:

• Create an online repository for the new

regional model test data

• Run two tests

- Compare outputs (file differences)

- Summarize results (mode shares, etc.)

• Process outcomes

- If pass, commit and version

- If fail, restart process as needed

Figure 3. Agency Test Repositories

Figure 4. Add a New Regional Model Figure 5. Add a New Feature or Fix a Bug

4 BENEFITS AND TRADEOFFS

The main BENEFITS of this CI system are:

• Users get more stable software as it has been tested in multiple regions with different

configurations, travel patterns, demographics, land use, modal options, etc.

• Developers have more confidence in revisions since they test across diverse cases.

• Everyone is better informed of issues, bug fixes, and the level of effort required to

develop and maintain a complex AB demand modeling software framework.

• Everyone benefits from a more efficient and repeatable workflow, which reduces the

time and cost for revisions.

Key TRADE-OFFS made in the system setup include:

• Because a large amount of data is required, the system needed to use a desktop CI

server on our network, as opposed to making use of a web-based CI service, which

would likely better integrate with the other tools in the system.

• In order to reduce test run times, the region specific models were configured to run a

subset of regional households. The downside of this is that the likelihood of testing low

probability travel patterns decreases, which decreases code coverage.

Figure 2. Jenkins CI Server

3B ADDING A NEW FEATURE

In order to add a new feature or fix a bug,

the following is done:

• Create issue

• Revise software (& test data as needed)

- Commit to develop branch

• Run two tests

- Compare outputs (file differences)

- Summarize results (mode shares, etc.)

• Process outcomes

- If pass, commit to master and version

- If fail, restart process as needed

3C BRANCHES

A repository is a collection of files and their history. A branch is a fork in the history of a

select set of files. Branches are useful for managing two versions of an agency’s model

inputs and outputs – the approved (i.e. tested) version and a new yet-to-be-approved (i.e.

untested) version. Branches are used in both the agency specific test repositories and the

Daysim project repository.

The Jenkins CI server automatically checks-out the

latest version of the software and the region-specific

tests, run each regional model, compare the results to

the expected results, and issues a success or failure

notice. The server is run locally since the size of all

model inputs and outputs for all models is 200+ GB.

In the Daysim project

repository, branches are

used in a more traditional

software engineering

manner – i.e. for

development of new

features and/or correcting

bugs. After developing a

new feature or fixing a bug,

the developer commits their

revisions into a

development branch, which

is then tested in each

region and if PASS, can

then be merged into the

master. If FAIL, then the

developer resolves issues

and restarts as needed.

In the agency repositories,

branches are used to

manage the currently

approved model

configuration for testing. This

allows the agency modelers

to stage new versions of

their model setup for testing,

while giving the Daysim

developers control over

when new test data (i.e.

model inputs, settings, and

outputs) are introduced into

the CI system. This is

important since model

results are often expected to

change as a result of

revisions to the software.

Figure 6. Agency Branches

Figure 7. Software Branches

