-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Update eval_squad to use API of latest optimum (#17918) #24
Update eval_squad to use API of latest optimum (#17918) #24
Conversation
Update eval_squad with latest optimum. Tested with: * optimum 1.13.1 * transformers 4.31.0 * onnxruntime-gpu 1.16.0 * onnx 1.14.1 * datasets 2.14.5 * evaluate 0.4.0 * torch version 2.2.0.dev20230920+cu121 Example output in A100: {'exact': 86.66035950804162, 'f1': 92.99622739711005, 'total': 10570, 'HasAns_exact': 86.66035950804162, 'HasAns_f1': 92.99622739711005, 'HasAns_total': 10570, 'best_exact': 86.66035950804162, 'best_exact_thresh': 0.9998456239700317, 'best_f1': 92.9962273971104, 'best_f1_thresh': 0.9998456239700317, 'total_time_in_seconds': 84.74025378189981, 'samples_per_second': 124.73410838731417, 'latency_in_seconds': 0.008017053337928081, 'provider': 'CUDAExecutionProvider', 'disable_fused_attention': False, 'pretrained_model_name': 'bert-large-uncased-whole-word-masking-finetuned-squad', 'onnx_path': './bert-large-uncased-whole-word-masking-finetuned-squad/optimized_model.onnx', 'batch_size': 1, 'sequence_length': 384, 'use_io_binding': True}
Output using MIGraphX EP on Navi31
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This PR has been working upstream and we usually catch this in our remote syncs but it does look like this may have been missed. For the sake of normalization I think it's good to merge this and spot check for other related missed bits.
I have checked it and it seems to work properly now for eval_squad.py. |
@groenenboomj is there anywhere else I should be backporting this too? rocm6.0_internal as well? |
ef01cdb
into
rocm6.0_internal_testing
…line (microsoft#21789) ### Description Upgrade pytorch_lightning to fix orttraining_amd_gpu_ci_pipeline ``` ROCm#24 1.838 WARNING: Ignoring version 1.6.0 of pytorch_lightning since it has invalid metadata: ROCm#24 1.838 Requested pytorch_lightning==1.6.0 from https://files.pythonhosted.org/packages/09/18/cee67f4849dea9a29b7af7cdf582246bcba9eaa73d9443e138a4172ec786/pytorch_lightning-1.6.0-py3-none-any.whl has invalid metadata: .* suffix can only be used with `==` or `!=` operators ROCm#24 1.838 torch (>=1.8.*) ROCm#24 1.838 ~~~~~~^ ROCm#24 1.838 Please use pip<24.1 if you need to use this version. ROCm#24 1.838 ERROR: Ignored the following versions that require a different python version: 1.14.0 Requires-Python >=3.10; 1.14.0rc1 Requires-Python >=3.10; 1.14.0rc2 Requires-Python >=3.10; 2.1.0 Requires-Python >=3.10; 2.1.0rc1 Requires-Python >=3.10 ROCm#24 1.838 ERROR: Could not find a version that satisfies the requirement pytorch_lightning==1.6.0 (from versions: 0.0.2, 0.2, 0.2.2, 0.2.3, 0.2.4, 0.2.4.1, 0.2.5, 0.2.5.1, 0.2.5.2, 0.2.6, 0.3, 0.3.1, 0.3.2, 0.3.3, 0.3.4, 0.3.4.1, 0.3.5, 0.3.6, 0.3.6.1, 0.3.6.3, 0.3.6.4, 0.3.6.5, 0.3.6.6, 0.3.6.7, 0.3.6.8, 0.3.6.9, 0.4.0, 0.4.1, 0.4.2, 0.4.3, 0.4.4, 0.4.5, 0.4.6, 0.4.7, 0.4.8, 0.4.9, 0.5.0, 0.5.1, 0.5.1.2, 0.5.1.3, 0.5.2, 0.5.2.1, 0.5.3, 0.5.3.1, 0.5.3.2, 0.5.3.3, 0.6.0, 0.7.1, 0.7.3, 0.7.5, 0.7.6, 0.8.1, 0.8.3, 0.8.4, 0.8.5, 0.9.0, 0.10.0, 1.0.0, 1.0.1, 1.0.2, 1.0.3, 1.0.4, 1.0.5, 1.0.6, 1.0.7, 1.0.8, 1.1.0, 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, 1.1.6, 1.1.7, 1.1.8, 1.2.0rc0, 1.2.0rc1, 1.2.0rc2, 1.2.0, 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7, 1.2.8, 1.2.9, 1.2.10, 1.3.0rc1, 1.3.0rc2, 1.3.0rc3, 1.3.0, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.6, 1.3.7, 1.3.7.post0, 1.3.8, 1.4.0rc0, 1.4.0rc1, 1.4.0rc2, 1.4.0, 1.4.1, 1.4.2, 1.4.3, 1.4.4, 1.4.5, 1.4.6, 1.4.7, 1.4.8, 1.4.9, 1.5.0rc0, 1.5.0rc1, 1.5.0, 1.5.1, 1.5.2, 1.5.3, 1.5.4, 1.5.5, 1.5.6, 1.5.7, 1.5.8, 1.5.9, 1.5.10, 1.6.0rc0, 1.6.0rc1, 1.6.0, 1.6.1, 1.6.2, 1.6.3, 1.6.4, 1.6.5, 1.7.0rc0, 1.7.0rc1, 1.7.0, 1.7.1, 1.7.2, 1.7.3, 1.7.4, 1.7.5, 1.7.6, 1.7.7, 1.8.0rc0, 1.8.0rc1, 1.8.0rc2, 1.8.0, 1.8.0.post1, 1.8.1, 1.8.2, 1.8.3, 1.8.3.post0, 1.8.3.post1, 1.8.3.post2, 1.8.4, 1.8.4.post0, 1.8.5, 1.8.5.post0, 1.8.6, 1.9.0rc0, 1.9.0, 1.9.1, 1.9.2, 1.9.3, 1.9.4, 1.9.5, 2.0.0rc0, 2.0.0, 2.0.1, 2.0.1.post0, 2.0.2, 2.0.3, 2.0.4, 2.0.5, 2.0.6, 2.0.7, 2.0.8, 2.0.9, 2.0.9.post0, 2.1.0rc0, 2.1.0rc1, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.0rc0, 2.2.0, 2.2.0.post0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.3.0, 2.3.1, 2.3.2, 2.3.3, 2.4.0) ROCm#24 1.838 ERROR: No matching distribution found for pytorch_lightning==1.6.0 ```
Update eval_squad with latest optimum.
Tested with:
Example output in A100:
{'exact': 86.66035950804162, 'f1': 92.99622739711005, 'total': 10570, 'HasAns_exact': 86.66035950804162, 'HasAns_f1': 92.99622739711005, 'HasAns_total': 10570, 'best_exact': 86.66035950804162, 'best_exact_thresh': 0.9998456239700317, 'best_f1': 92.9962273971104, 'best_f1_thresh': 0.9998456239700317, 'total_time_in_seconds': 84.74025378189981, 'samples_per_second': 124.73410838731417, 'latency_in_seconds': 0.008017053337928081, 'provider': 'CUDAExecutionProvider', 'disable_fused_attention': False, 'pretrained_model_name':
'bert-large-uncased-whole-word-masking-finetuned-squad', 'onnx_path': './bert-large-uncased-whole-word-masking-finetuned-squad/optimized_model.onnx', 'batch_size': 1, 'sequence_length': 384, 'use_io_binding': True}
Description
Cherry pick from Microsoft/Onnxruntime for upstream changes to eval_squad.py
Motivation and Context
Without this backport we're broken for migx_onnxrt_bert_distilled_benchmarks due to missing pieces in the script. Testing was originally done upstream and it appears this change hasn't been backported.