forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 4
/
InferenceTest.netcore.cs
1429 lines (1274 loc) · 70.2 KB
/
InferenceTest.netcore.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
using Microsoft.ML.OnnxRuntime.Tensors;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text.RegularExpressions;
using Xunit;
namespace Microsoft.ML.OnnxRuntime.Tests
{
/// <summary>
/// This is compensate for the absence of string.Contains() in .NET Standard 2.0
/// Contains(String, StringComparison)
/// </summary>
public static class StringExtensions
{
public static bool Contains(this String str, String substring,
StringComparison comp)
{
if (substring == null)
throw new ArgumentNullException("substring",
"substring cannot be null.");
else if (!Enum.IsDefined(typeof(StringComparison), comp))
throw new ArgumentException("comp is not a member of StringComparison",
"comp");
return str.IndexOf(substring, comp) >= 0;
}
}
public partial class InferenceTest
{
private const string module = "onnxruntime.dll";
private const string propertiesFile = "Properties.txt";
[Fact(DisplayName = "CanCreateAndDisposeSessionWithModelPath")]
public void CanCreateAndDisposeSessionWithModelPath()
{
string modelPath = Path.Combine(Directory.GetCurrentDirectory(), "squeezenet.onnx");
using (var session = new InferenceSession(modelPath))
{
Assert.NotNull(session);
Assert.NotNull(session.InputMetadata);
Assert.Single(session.InputMetadata); // 1 input nodeMeta
Assert.True(session.InputMetadata.ContainsKey("data_0")); // input nodeMeta name
Assert.Equal(typeof(float), session.InputMetadata["data_0"].ElementType);
Assert.True(session.InputMetadata["data_0"].IsTensor);
var expectedInputDimensions = new int[] { 1, 3, 224, 224 };
Assert.Equal(expectedInputDimensions.Length, session.InputMetadata["data_0"].Dimensions.Length);
for (int i = 0; i < expectedInputDimensions.Length; i++)
{
Assert.Equal(expectedInputDimensions[i], session.InputMetadata["data_0"].Dimensions[i]);
}
Assert.NotNull(session.OutputMetadata);
Assert.Single(session.OutputMetadata); // 1 output nodeMeta
Assert.True(session.OutputMetadata.ContainsKey("softmaxout_1")); // output nodeMeta name
Assert.Equal(typeof(float), session.OutputMetadata["softmaxout_1"].ElementType);
Assert.True(session.OutputMetadata["softmaxout_1"].IsTensor);
var expectedOutputDimensions = new int[] { 1, 1000, 1, 1 };
Assert.Equal(expectedOutputDimensions.Length, session.OutputMetadata["softmaxout_1"].Dimensions.Length);
for (int i = 0; i < expectedOutputDimensions.Length; i++)
{
Assert.Equal(expectedOutputDimensions[i], session.OutputMetadata["softmaxout_1"].Dimensions[i]);
}
}
}
#if USE_CUDA
[Fact(DisplayName = "TestCUDAProviderOptions")]
private void TestCUDAProviderOptions()
{
string modelPath = Path.Combine(Directory.GetCurrentDirectory(), "squeezenet.onnx");
string defaultDeviceId = "0";
string deviceIdFromEnv = System.Environment.GetEnvironmentVariable("OnnxruntimeTestGpuDeviceId");
if (!string.IsNullOrEmpty(deviceIdFromEnv) && int.TryParse(deviceIdFromEnv, out int deviceId) && deviceId >= 0)
{
defaultDeviceId = deviceIdFromEnv;
output.WriteLine($"Parsed ID: {deviceIdFromEnv}");
}
using (var cleanUp = new DisposableListTest<IDisposable>())
{
var cudaProviderOptions = new OrtCUDAProviderOptions();
cleanUp.Add(cudaProviderOptions);
var providerOptionsDict = new Dictionary<string, string>();
providerOptionsDict["device_id"] = defaultDeviceId;
// 256MB
providerOptionsDict["gpu_mem_limit"] = "268435456";
providerOptionsDict["arena_extend_strategy"] = "kSameAsRequested";
providerOptionsDict["cudnn_conv_algo_search"] = "DEFAULT";
providerOptionsDict["do_copy_in_default_stream"] = "1";
providerOptionsDict["cudnn_conv_use_max_workspace"] = "1";
providerOptionsDict["cudnn_conv1d_pad_to_nc1d"] = "1";
cudaProviderOptions.UpdateOptions(providerOptionsDict);
var resultProviderOptionsDict = new Dictionary<string, string>();
ProviderOptionsValueHelper.StringToDict(cudaProviderOptions.GetOptions(), resultProviderOptionsDict);
// test provider options configuration
string value;
value = resultProviderOptionsDict["device_id"];
Assert.Equal("0", value);
value = resultProviderOptionsDict["gpu_mem_limit"];
Assert.Equal("268435456", value);
value = resultProviderOptionsDict["arena_extend_strategy"];
Assert.Equal("kSameAsRequested", value);
value = resultProviderOptionsDict["cudnn_conv_algo_search"];
Assert.Equal("DEFAULT", value);
value = resultProviderOptionsDict["do_copy_in_default_stream"];
Assert.Equal("1", value);
value = resultProviderOptionsDict["cudnn_conv_use_max_workspace"];
Assert.Equal("1", value);
value = resultProviderOptionsDict["cudnn_conv1d_pad_to_nc1d"];
Assert.Equal("1", value);
// test correctness of provider options
SessionOptions options = SessionOptions.MakeSessionOptionWithCudaProvider(cudaProviderOptions);
cleanUp.Add(options);
var session = new InferenceSession(modelPath, options);
cleanUp.Add(session);
var inputMeta = session.InputMetadata;
var container = new List<NamedOnnxValue>();
float[] inputData = TestDataLoader.LoadTensorFromFile(@"bench.in"); // this is the data for only one input tensor for this model
foreach (var name in inputMeta.Keys)
{
Assert.Equal(typeof(float), inputMeta[name].ElementType);
Assert.True(inputMeta[name].IsTensor);
var tensor = new DenseTensor<float>(inputData, inputMeta[name].Dimensions);
container.Add(NamedOnnxValue.CreateFromTensor<float>(name, tensor));
}
session.Run(container);
}
}
#endif
#if USE_TENSORRT
[Fact(DisplayName = "CanRunInferenceOnAModelWithTensorRT")]
private void CanRunInferenceOnAModelWithTensorRT()
{
string modelPath = Path.Combine(Directory.GetCurrentDirectory(), "squeezenet.onnx");
int deviceId = 0;
string deviceIdStr = System.Environment.GetEnvironmentVariable("ONNXRUNTIME_TEST_GPU_DEVICE_ID");
if (!string.IsNullOrEmpty(deviceIdStr) && int.TryParse(deviceIdStr, out int parsedValue) && parsedValue >= 0)
{
deviceId = parsedValue;
output.WriteLine($"Parsed ID: {parsedValue}");
}
using (var cleanUp = new DisposableListTest<IDisposable>())
{
SessionOptions options = SessionOptions.MakeSessionOptionWithTensorrtProvider(deviceId);
cleanUp.Add(options);
var session = new InferenceSession(modelPath, options);
cleanUp.Add(session);
var inputMeta = session.InputMetadata;
var container = new List<NamedOnnxValue>();
float[] inputData = TestDataLoader.LoadTensorFromFile(@"bench.in"); // this is the data for only one input tensor for this model
foreach (var name in inputMeta.Keys)
{
Assert.Equal(typeof(float), inputMeta[name].ElementType);
Assert.True(inputMeta[name].IsTensor);
var tensor = new DenseTensor<float>(inputData, inputMeta[name].Dimensions);
container.Add(NamedOnnxValue.CreateFromTensor<float>(name, tensor));
}
using (var results = session.Run(container))
{
ValidateRunResults(results);
}
}
}
[Fact(DisplayName = "TestTensorRTProviderOptions")]
private void TestTensorRTProviderOptions()
{
string modelPath = Path.Combine(Directory.GetCurrentDirectory(), "squeezenet.onnx");
string calTablePath = "squeezenet_calibration.flatbuffers";
string enginePath = "./";
string engineDecrptLibPath = "engine_decryp";
string defaultDeviceId = "0";
string deviceIdFromEnv = System.Environment.GetEnvironmentVariable("OnnxruntimeTestGpuDeviceId");
if (!string.IsNullOrEmpty(deviceIdFromEnv) && int.TryParse(deviceIdFromEnv, out int deviceId) && deviceId >= 0)
{
defaultDeviceId = deviceIdFromEnv;
output.WriteLine($"Parsed ID: {deviceIdFromEnv}");
}
using (var cleanUp = new DisposableListTest<IDisposable>())
{
var trtProviderOptions = new OrtTensorRTProviderOptions();
cleanUp.Add(trtProviderOptions);
var providerOptionsDict = new Dictionary<string, string>();
providerOptionsDict["device_id"] = defaultDeviceId;
providerOptionsDict["trt_fp16_enable"] = "1";
providerOptionsDict["trt_int8_enable"] = "1";
providerOptionsDict["trt_int8_calibration_table_name"] = calTablePath;
providerOptionsDict["trt_engine_cache_enable"] = "1";
providerOptionsDict["trt_engine_cache_path"] = enginePath;
providerOptionsDict["trt_engine_decryption_enable"] = "0";
providerOptionsDict["trt_engine_decryption_lib_path"] = engineDecrptLibPath;
trtProviderOptions.UpdateOptions(providerOptionsDict);
var resultProviderOptionsDict = new Dictionary<string, string>();
ProviderOptionsValueHelper.StringToDict(trtProviderOptions.GetOptions(), resultProviderOptionsDict);
// test provider options configuration
string value;
value = resultProviderOptionsDict["device_id"];
Assert.Equal(defaultDeviceId, value);
value = resultProviderOptionsDict["trt_fp16_enable"];
Assert.Equal("1", value);
value = resultProviderOptionsDict["trt_int8_enable"];
Assert.Equal("1", value);
value = resultProviderOptionsDict["trt_int8_calibration_table_name"];
Assert.Equal(calTablePath, value);
value = resultProviderOptionsDict["trt_engine_cache_enable"];
Assert.Equal("1", value);
value = resultProviderOptionsDict["trt_engine_cache_path"];
Assert.Equal(enginePath, value);
value = resultProviderOptionsDict["trt_engine_decryption_enable"];
Assert.Equal("0", value);
value = resultProviderOptionsDict["trt_engine_decryption_lib_path"];
Assert.Equal(engineDecrptLibPath, value);
// test correctness of provider options
SessionOptions options = SessionOptions.MakeSessionOptionWithTensorrtProvider(trtProviderOptions);
cleanUp.Add(options);
var session = new InferenceSession(modelPath, options);
cleanUp.Add(session);
var inputMeta = session.InputMetadata;
var container = new List<NamedOnnxValue>();
float[] inputData = TestDataLoader.LoadTensorFromFile(@"bench.in"); // this is the data for only one input tensor for this model
foreach (var name in inputMeta.Keys)
{
Assert.Equal(typeof(float), inputMeta[name].ElementType);
Assert.True(inputMeta[name].IsTensor);
var tensor = new DenseTensor<float>(inputData, inputMeta[name].Dimensions);
container.Add(NamedOnnxValue.CreateFromTensor<float>(name, tensor));
}
session.Run(container);
}
}
#endif
private static Func<DirectoryInfo, IEnumerable<DirectoryInfo>> getOpsetDirectories = delegate (DirectoryInfo modelsDirInfo)
{
return modelsDirInfo.EnumerateDirectories("opset*", SearchOption.AllDirectories);
};
private static Dictionary<string, string> GetSkippedModels(DirectoryInfo modelsDirInfo)
{
var skipModels = new Dictionary<string, string>() {
{ "mxnet_arcface", "Model is an invalid ONNX model"},
{ "tf_inception_v2", "TODO: Debug failing model, skipping for now" },
{ "fp16_tiny_yolov2", "Tolerance level for float16 is not known. We now support fp16." },
{ "fp16_test_tiny_yolov2", "ImageScaler is not a registered function/op"},
{ "fp16_coreml_FNS-Candy", "ImageScaler is not a registered function/op" },
{ "fp16_coreml_LinearRegression_NYCTaxi", "Error in Node:featureVectorizer : No Op registered for FeatureVectorizer with domain_version of 1"},
{ "test_mnist", "Does not run in opset9, runs in other opsets. The model runs but I don't have a data set to debug output locally. Tensors of type ElementType not currently supported in the LoadTensorFromFile" },
{ "BERT_Squad", "Could not find an implementation for the nodeMeta bert / embeddings / one_hot:OneHot(9)" },
{ "mlperf_ssd_mobilenet_300", "Could not find file output_0.pb" },
{ "tf_resnet_v1_50", "result mismatch when Conv BN Fusion is applied" },
{ "tf_resnet_v1_101", "result mismatch when Conv BN Fusion is applied" },
{ "tf_resnet_v1_152", "result mismatch when Conv BN Fusion is applied" },
{ "cntk_simple_seg", "Bad onnx test output caused by wrong SAME_UPPER/SAME_LOWER for ConvTranspose" },
{ "coreml_Imputer-LogisticRegression_sklearn_load_breast_cancer", "Can't determine model file name" },
{ "mask_rcnn_keras", "Model should be edited to remove the extra outputs" },
{ "test_maxunpool_export_with_output_shape", "results mismatch"},
{ "test_min_int8", "Could not find an implementation for Min(13) node with name"},
{ "test_min_uint8", "Could not find an implementation for Min(13) node with name"},
{ "test_min_int16", "Could not find an implementation for Min(13) node with name"},
{ "test_min_uint16", "Could not find an implementation for Min(13) node with name"},
{ "test_max_int8", "Could not find an implementation for Max(13) node with name"},
{ "test_max_uint8", "Could not find an implementation for Max(13) node with name"},
{ "test_max_int16", "Could not find an implementation for Max(13) node with name"},
{ "test_max_uint16", "Could not find an implementation for Max(13) nodeMeta with name '"},
{ "test_mul_uint8", "Could not find an implementation for Mul(14) node with name" },
{ "test_bitshift_right_uint16", "Could not find an implementation for BitShift(11) nodeMeta with name ''"},
{ "test_bitshift_left_uint16", "Could not find an implementation for BitShift(11)"},
{ "test_pow_types_float32_uint64", "Could not find an implementation for Pow(15) node with name ''"},
{ "test_pow_types_float32_uint32", "Could not find an implementation for Pow(15) node with name ''"},
{ "test_resize_downsample_scales_cubic_align_corners", "Results mismatch"},
{ "test_resize_downsample_scales_linear_align_corners", "Results mismatch"},
{ "test_gru_batchwise", "batchwise operations not supported"},
{ "test_lstm_batchwise", "Batchwise recurrent operations(layout == 1) are not supported.If you need support create a github issue with justification."},
{ "test_simple_rnn_batchwise", "batchwise operations not supported"},
{ "test_batchnorm_example_training_mode", "opset14 version not implemented yet"},
{ "test_bernoulli", "random generator, results mismatch"},
{ "test_bernoulli_seed", "random generator, results mismatch"},
{ "test_bernoulli_double", "random generator, results mismatch"},
{ "test_bernoulli_expanded", "random generator, results mismatch"},
{ "test_bernoulli_seed_expanded", "random generator, results mismatch"},
{ "test_bernoulli_double_expanded", "random generator, results mismatch"},
// the expansion of Softplus uses Exp(1). ORT has a Softplus kernel, so testing the expansion is
// unnecessary and fails as ORT support for Exp started at opset 6 (as ORT didn't exist until opset 7).
{ "test_clip_default_int8_max_expanded", "Could not find an implementation for Less(13) nodeMeta with name ''" },
{ "test_softplus_expanded", "Could not find an implementation for Exp(1) node with name ''"},
{ "test_softplus_example_expanded", "Could not find an implementation for Exp(1) node with name ''"},
{ "test_div_uint8", "Could not find an implementation for Div(14) nodeMeta with name ''"},
{ "test_add_uint8", "Opset18 Could not find an implementation for Add(14) nodeMeta with name ''"},
{ "test_col2im_pads", "Results mismatch due to a typo in test data"},
{ "test_optional_has_element_empty_optional_input", "OptionalProto test metadata. Unable to load 'optional_input' optional element type of: Undefined type"},
{ "test_loop13_seq", "3rd input is an empty sequence. Ort API does not tolerate empty seq: Number of values should be at least 1" },
// Training tests
{ "BERT-Squad-int8", "training domain"},
{ "YOLOv3-12-int8", "training_domain"},
{ "test_training_dropout_default", "results mismatch"},
{ "test_training_dropout_default_mask", "Results mismatch"},
{ "test_training_dropout", "results mismatch"},
{ "test_training_dropout_mask", "results mismatch."},
{ "test_momentum", "ai.onnx.preview.training:Momentum(-1) is not a registered function/op"},
{ "test_momentum_multiple", "ai.onnx.preview.training:Momentum(-1) is not a registered function/op"},
{ "test_nesterov_momentum", "ai.onnx.preview.training:Momentum(-1) is not a registered function/op"},
{ "test_adam", "ai.onnx.preview.training:Adam(-1) is not a registered function/op"},
{ "test_adam_multiple", "ai.onnx.preview.training:Adam(-1) is not a registered function/op"},
{ "test_adagrad", "ai.onnx.preview.training:Adagrad(-1) is not a registered function/op"},
{ "test_adagrad_multiple", "ai.onnx.preview.training:Adagrad(-1) is not a registered function/op"},
{ "test_zfnet512", "skip it as ZFNET-512"},
};
// The following models fails on nocontribops win CI
var disableContribOpsEnvVar = Environment.GetEnvironmentVariable("DisableContribOps");
var isContribOpsDisabled = (disableContribOpsEnvVar != null) ? disableContribOpsEnvVar.Equals("ON") : false;
if (isContribOpsDisabled)
{
skipModels["test_tiny_yolov2"] = "Fails when ContribOps is disabled";
skipModels["mask_rcnn_keras"] = "Pad is not a registered function/op";
}
// Skip traditional ML models
var disableMlOpsEnvVar = Environment.GetEnvironmentVariable("DisableMlOps");
var isMlOpsDisabled = (disableMlOpsEnvVar != null) ? disableMlOpsEnvVar.Equals("ON") : false;
if (isMlOpsDisabled)
{
foreach (var opsetDir in getOpsetDirectories(modelsDirInfo))
{
foreach (var modelDir in opsetDir.EnumerateDirectories())
{
var modelDirName = modelDir.Name;
if (modelDirName.StartsWith("scikit_") ||
modelDirName.StartsWith("libsvm_") ||
modelDirName.StartsWith("coreml_") ||
modelDirName.StartsWith("keras2coreml_") ||
modelDirName.StartsWith("XGBoost_"))
{
skipModels[modelDirName] = "Fails when ML ops are disabled";
}
} //model
} //opset
}
// This model fails on x86 Win CI
if (System.Environment.Is64BitProcess == false)
{
skipModels["test_vgg19"] = "Get preallocated buffer for initializer conv4_4_b_0 failed";
skipModels["GPT2_LM_HEAD"] = "System out of memory";
skipModels["GPT2"] = "System out of memory";
skipModels["test_GPT2"] = "System out of memory";
skipModels["tf_pnasnet_large"] = "Get preallocated buffer for initializer ConvBnFusion_BN_B_cell_5/comb_iter_1/left/bn_sep_7x7_1/beta:0_203 failed";
skipModels["tf_nasnet_large"] = "Get preallocated buffer for initializer ConvBnFusion_BN_B_cell_11/beginning_bn/beta:0_331 failed";
skipModels["ZFNet-512"] = "System out of memory";
skipModels["test_bvlc_reference_caffenet"] = "System out of memory";
skipModels["coreml_VGG16_ImageNet"] = "System out of memory";
skipModels["test_ssd"] = "System out of memory";
skipModels["roberta_sequence_classification"] = "System out of memory";
// models from model zoo
skipModels["VGG 19"] = "bad allocation";
skipModels["VGG 19-caffe2"] = "bad allocation";
skipModels["VGG 19-bn"] = "bad allocation";
skipModels["VGG 16"] = "bad allocation";
skipModels["VGG 16-bn"] = "bad allocation";
skipModels["VGG 16-fp32"] = "bad allocation";
}
return skipModels;
}
public static IEnumerable<object[]> GetModelsForTest()
{
var modelsDir = GetTestModelsDir();
var modelsDirInfo = new DirectoryInfo(modelsDir);
var skipModels = GetSkippedModels(modelsDirInfo);
foreach (var opsetDir in getOpsetDirectories(modelsDirInfo))
{
//var modelRoot = new DirectoryInfo(Path.Combine(modelsDir, opsetDir.Name));
foreach (var modelDir in opsetDir.EnumerateDirectories())
{
if (!(skipModels.ContainsKey(modelDir.Name) ||
modelDir.Name.Contains("int8", StringComparison.OrdinalIgnoreCase) ||
modelDir.Name.Contains("qdq", StringComparison.OrdinalIgnoreCase)))
{
yield return new object[] { modelDir.Parent.FullName, modelDir.Name };
}
} //model
} //opset
}
public static IEnumerable<object[]> GetSkippedModelForTest()
{
var modelsDir = GetTestModelsDir();
var modelsDirInfo = new DirectoryInfo(modelsDir);
var skipModels = GetSkippedModels(modelsDirInfo);
foreach (var opsetDir in getOpsetDirectories(modelsDirInfo))
{
foreach (var modelDir in opsetDir.EnumerateDirectories())
{
if (skipModels.ContainsKey(modelDir.Name) ||
modelDir.Name.Contains("int8", StringComparison.OrdinalIgnoreCase) ||
modelDir.Name.Contains("qdq", StringComparison.OrdinalIgnoreCase))
{
//Console.WriteLine("Model {0} is skipped due to the error: {1}", modelDir.FullName, skipModels[modelDir.Name]);
yield return new object[] { modelDir.Parent.FullName, modelDir.Name };
}
}
}
}
private string MatchInputOutputWithFile(string fileName, InferenceSession session, bool input, out NodeMetadata result)
{
string nodeName = string.Empty;
result = null;
var names = (input) ? session.InputNames : session.OutputNames;
var metadata = (input) ? session.InputMetadata : session.OutputMetadata;
string regEx = (input) ? @"input_(\d{1,}).pb" : @"output_(\d{1,}).pb";
var inpOut = (input) ? "input" : "output";
// Extract the number from the file name, if not try to match the input/output name with the name of the file.
try
{
// captures start at index 1
var group = Regex.Matches(fileName, regEx).Single().Groups[1];
var num = int.Parse(group.Value);
if (num >= 0 && num < names.Count)
{
nodeName = names[num];
result = metadata[nodeName];
}
else
{
throw new InvalidDataException($"Filename '{fileName}' {inpOut} number '{num}' is out of range for '{names.Count}' {inpOut}(s)");
}
}
catch (Exception)
{
// Either does not match or can not parse the number
}
if (result is null)
{
throw new InvalidDataException($"Unable to match file: {fileName} to input/output metadata");
}
return nodeName;
}
// The numbering of the input files does not match the order of outputs
// listed in the metadata of test_BERT_Squad. Model metadata order:
// "unique_ids_raw_output___9:0", "segment_ids:0", "input_mask:0", "input_ids:0"
// The corr input files are: input_0.pb, input_3.pb, input_2.pb, input_1.pb
// Everything in reverse, but the 0.
// Previously, it worked because our test data has matching
// tensor names that we could match to metadata after we load the tensor.
// But now, we need to know ahead of time what Onnx type we load, and thus match
// metadata with the test data file before loading. Protobuf can happily load whatever
// and give you garbage.
private string MatchBertSquadInputs(string fileName)
{
string nodeName = string.Empty;
switch (fileName)
{
case "input_0.pb":
nodeName = "unique_ids_raw_output___9:0";
break;
case "input_1.pb":
nodeName = "input_ids:0";
break;
case "input_2.pb":
nodeName = "input_mask:0";
break;
case "input_3.pb":
nodeName = "segment_ids:0";
break;
default:
throw new InvalidDataException($"Unhandled input file name: '{fileName}' for test_BERT_Squad");
}
return nodeName;
}
// The model actually has only 3 outputs, but the Zoo version has 4 files are supplied.
// The numbering of the output files does not match the order of outputs
// listed in the metadata.
// Previously, it worked because our CI test data version has matching
// tensor names that we could match to metadata after we load the tensor.
// But now, we need to know ahead of time what Onnx type we load, and thus match
// metadata with the test data file before loading. Protobuf can happily load whatever
// and give you garbage.
// Order in the metadata: unstack:1, unstack:0, unique_ids:0
// The files are in reverse order
private string MatchBertSquadOutputs(string fileName)
{
string nodeName = string.Empty;
switch (fileName)
{
case "output_0.pb": // Int64
nodeName = "unique_ids:0";
break;
case "output_1.pb":
nodeName = "unstack:0";
break;
case "output_2.pb":
nodeName = "unstack:1";
break;
default:
throw new InvalidDataException($"Unhandled output file name: '{fileName}' for test_BERT_Squad");
}
return nodeName;
}
private const string keras_prelu_ImageNet_small_nodeName_Input = "p_re_lu_3_input";
private const string keras_prelu_ImageNet_small_nodeName_Output = "p_re_lu_3/add:0";
private void LoadInputData<T>(string opset, string modelName,
DirectoryInfo testDataDir,
InferenceSession session,
IList<T> inputContainer,
Func<string, string, NodeMetadata, T> loader)
{
var inMeta = session.InputMetadata;
foreach (var f in testDataDir.EnumerateFiles("input_*.pb"))
{
if (modelName == "keras_prelu_ImageNet_small" && opset == "opset9")
{
// The model has 1 input, match all file names (they are different in each data set)
// to the same input
var nodeName = keras_prelu_ImageNet_small_nodeName_Input;
var nodeMeta = inMeta[nodeName];
inputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
else if (modelName == "test_BERT_Squad" && opset == "opset8")
{
string nodeName = MatchBertSquadInputs(f.Name);
var nodeMeta = inMeta[nodeName];
inputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
else
{
var nodeName = MatchInputOutputWithFile(f.Name, session, true, out NodeMetadata nodeMeta);
inputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
}
}
private void LoadOutputData<T>(string opset, string modelName,
DirectoryInfo testDataDir,
InferenceSession session,
IList<T> outputContainer,
Func<string, string, NodeMetadata, T> loader)
{
var outMeta = session.OutputMetadata;
foreach (var f in testDataDir.EnumerateFiles("output_*.pb"))
{
if (modelName == "keras_prelu_ImageNet_small" && opset == "opset9")
{
// The model has 1 output, match all file names (they are different in each data set)
// to the same output
var nodeName = keras_prelu_ImageNet_small_nodeName_Output;
var nodeMeta = outMeta[nodeName];
outputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
else if (modelName == "test_BERT_Squad" && opset == "opset8")
{
string nodeName = MatchBertSquadOutputs(f.Name);
var nodeMeta = outMeta[nodeName];
outputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
else
{
// Otherwise, just match trailing filename number to the input name -> metadata
var nodeName = MatchInputOutputWithFile(f.Name, session, false, out NodeMetadata nodeMeta);
outputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
}
}
private void RunPretrainedModel(InferenceSession session,
IReadOnlyList<NamedOnnxValue> inputContainer, IReadOnlyList<NamedOnnxValue> outputContainer)
{
var outMeta = session.OutputMetadata;
var orderedOutputNames = new List<string>(outputContainer.Count);
foreach (var output in outputContainer)
{
orderedOutputNames.Add(output.Name);
}
using (var resultCollection = session.Run(inputContainer, orderedOutputNames))
{
Assert.Equal(outputContainer.Count, resultCollection.Count);
for (int i = 0; i < resultCollection.Count; ++i)
{
var result = resultCollection[i];
var outputValue = outputContainer[i];
Assert.NotNull(outputValue);
Assert.Equal(result.Name, outputValue.Name);
var outputMeta = outMeta[outputValue.Name];
if (outputMeta.OnnxValueType == OnnxValueType.ONNX_TYPE_OPTIONAL)
{
outputMeta = outputMeta.AsOptionalMetadata().ElementMeta;
}
Assert.Equal(outputValue.ValueType, outputMeta.OnnxValueType);
switch (outputValue.ValueType)
{
case OnnxValueType.ONNX_TYPE_TENSOR: // Only Dense tensors now
{
VerifyTensorResults(outputMeta.ElementDataType, result, outputValue);
}
break;
case OnnxValueType.ONNX_TYPE_SEQUENCE:
{
VerifySequenceResults(result, outputValue, outputMeta);
}
break;
default:
Assert.Fail($"TestPreTrainedModels cannot handle Onnxtype: {outputValue.ValueType}");
break;
}
}
}
}
private void RunPretrainedModel(InferenceSession session, RunOptions runOptions,
IReadOnlyList<DisposableTestPair<OrtValue>> inputContainer,
IReadOnlyList<DisposableTestPair<OrtValue>> outputContainer)
{
var outMeta = session.OutputMetadata;
var orderedInputNames = new List<string>(inputContainer.Count);
var orderdedInputs = new List<OrtValue>(inputContainer.Count);
foreach (var pair in inputContainer)
{
orderedInputNames.Add(pair.Key);
orderdedInputs.Add(pair.Value);
}
var orderedOutputNames = new List<string>(outputContainer.Count);
var orderedOutputs = new List<OrtValue>(outputContainer.Count);
foreach (var pair in outputContainer)
{
orderedOutputNames.Add(pair.Key);
orderedOutputs.Add(pair.Value);
}
using (var results = session.Run(runOptions, orderedInputNames, orderdedInputs, orderedOutputNames))
{
Assert.Equal(outMeta.Count, results.Count);
Assert.Equal(outputContainer.Count, results.Count);
for (int i = 0; i < outputContainer.Count; ++i)
{
var resultValue = results[i];
var expectedValue = outputContainer[i].Value;
var outputMeta = outMeta[orderedOutputNames[i]];
if (outputMeta.OnnxValueType == OnnxValueType.ONNX_TYPE_OPTIONAL)
{
outputMeta = outputMeta.AsOptionalMetadata().ElementMeta;
}
if (outputMeta.OnnxValueType == OnnxValueType.ONNX_TYPE_TENSOR)
{
VerifyTensorResults(outputMeta.ElementDataType, resultValue, expectedValue);
}
else if (outputMeta.OnnxValueType == OnnxValueType.ONNX_TYPE_SEQUENCE)
{
VerifySequenceResults(resultValue, expectedValue, outputMeta);
}
else
{
Assert.Fail($"TestPreTrainedModels cannot handle Onnxtype: {outputMeta.OnnxValueType}");
}
}
}
}
[Theory(DisplayName = "TestPretrainedModelsWithOrtValue")]
[MemberData(nameof(GetModelsForTest))]
[MemberData(nameof(GetSkippedModelForTest), Skip = "Skipped due to Error, please fix the error and enable the test")]
public void TestPretrainedModelsWithOrtValue(string opsetDir, string modelName)
{
TestPreTrainedModels(opsetDir, modelName, true);
}
[Theory(DisplayName = "TestPreTrainedModels")]
[MemberData(nameof(GetModelsForTest))]
[MemberData(nameof(GetSkippedModelForTest), Skip = "Skipped due to Error, please fix the error and enable the test")]
private void TestPreTrainedModels(string opsetDir, string modelName, bool useOrtValueAPIs = false)
{
var opsetDirInfo = new DirectoryInfo(opsetDir);
var opset = opsetDirInfo.Name;
string onnxModelFileName = null;
var modelDir = new DirectoryInfo(Path.Combine(opsetDir, modelName));
try
{
var onnxModelNames = modelDir.GetFiles("*.onnx");
bool validModelFound = false;
if (onnxModelNames.Length > 0)
{
// TODO remove file "._resnet34v2.onnx" from test set
for (int i = 0; i < onnxModelNames.Length; i++)
{
if (onnxModelNames[i].Name != "._resnet34v2.onnx")
{
onnxModelNames[0] = onnxModelNames[i];
validModelFound = true;
}
}
}
if (validModelFound)
{
onnxModelFileName = Path.Combine(modelDir.FullName, onnxModelNames[0].Name);
}
else
{
var modelNamesList = string.Join(",", onnxModelNames.Select(x => x.ToString()));
throw new Exception($"Opset {opset} Model {modelName}. Can't determine model file name. Found these :{modelNamesList}");
}
using (var runOptions = new RunOptions())
using (var session = new InferenceSession(onnxModelFileName))
{
string testDataDirNamePattern = "test_data*";
if (opset == "opset9" && modelName == "LSTM_Seq_lens_unpacked")
{
testDataDirNamePattern = "seq_lens*"; // discrepancy in data directory
}
foreach (var testDataDir in modelDir.EnumerateDirectories(testDataDirNamePattern))
{
if (useOrtValueAPIs)
{
using (var inputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.InputMetadata.Count))
using (var outputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.OutputMetadata.Count))
{
LoadInputData(opset, modelName, testDataDir, session, inputOrtValues, TestDataLoader.LoadOrtValueFromFilePb);
LoadOutputData(opset, modelName, testDataDir, session, outputOrtValues, TestDataLoader.LoadOrtValueFromFilePb);
RunPretrainedModel(session, runOptions, inputOrtValues, outputOrtValues);
}
}
else
{
var inputContainer = new List<NamedOnnxValue>(session.InputMetadata.Count);
LoadInputData(opset, modelName, testDataDir, session, inputContainer, TestDataLoader.LoadOnnxValueFromFilePb);
var outputContainer = new List<NamedOnnxValue>(session.OutputMetadata.Count);
LoadOutputData(opset, modelName, testDataDir, session, outputContainer, TestDataLoader.LoadOnnxValueFromFilePb);
RunPretrainedModel(session, inputContainer, outputContainer);
}
}
}
}
catch (Exception ex)
{
var msg = $"Opset {opset}, Model {modelName}: ModelFile = {onnxModelFileName} error = {ex.Message}";
if (ex.Message.Contains("ONNX Runtime only *guarantees* support for models stamped with official released onnx opset versions"))
{
// If the exception is thrown because the opset version of the test model is
// not supported by ONNXRuntime yet, then ignore the test and proceed.
// ORT allows commits from ONNX master and in such cases we do come across new opsets which are
// not supported in ORT yet. In order to force these tests to run set env var ALLOW_RELEASED_ONNX_OPSET_ONLY=0
output.WriteLine("Skipping the model test as the latest ONNX opset is not supported yet. Error Message: " + msg);
}
else
{
throw new Exception(msg + "\n" + ex.StackTrace);
}
}
}
private static void VerifySequenceResults(NamedOnnxValue result, NamedOnnxValue expectedValue, NodeMetadata metaData)
{
var meta = metaData.AsSequenceMetadata();
var resultSequence = result.AsEnumerable<NamedOnnxValue>();
var expectedSequence = expectedValue.AsEnumerable<NamedOnnxValue>();
Assert.Equal(resultSequence.Count(), expectedSequence.Count());
foreach (var (resultItem, expectedItem) in resultSequence.Zip(expectedSequence, (r, e) => (r, e)))
{
Assert.Equal(resultItem.ValueType, expectedItem.ValueType);
Assert.Equal(resultItem.ValueType, meta.ElementMeta.OnnxValueType);
switch (resultItem.ValueType)
{
case OnnxValueType.ONNX_TYPE_TENSOR:
VerifyTensorResults(meta.ElementMeta.ElementDataType, resultItem, expectedItem);
break;
case OnnxValueType.ONNX_TYPE_SEQUENCE:
{
VerifySequenceResults(resultItem, expectedItem, meta.ElementMeta);
}
break;
default:
Assert.Fail("VerifySequenceResults cannot handle Onnxtype: " + resultItem.ValueType.ToString());
break;
}
Assert.Equal(resultItem.AsTensor<float>(), expectedItem.AsTensor<float>(), new FloatComparer());
}
}
private static void VerifyTensorResults(TensorElementType elementType, NamedOnnxValue result, NamedOnnxValue expectedValue)
{
switch (elementType)
{
case TensorElementType.Float:
Assert.Equal(expectedValue.AsTensor<float>(), result.AsTensor<float>(), new FloatComparer());
break;
case TensorElementType.Double:
Assert.Equal(expectedValue.AsTensor<double>(), result.AsTensor<double>(), new DoubleComparer());
break;
case TensorElementType.Int32:
Assert.Equal(expectedValue.AsTensor<int>(), result.AsTensor<int>(), new ExactComparer<int>());
break;
case TensorElementType.UInt32:
Assert.Equal(expectedValue.AsTensor<uint>(), result.AsTensor<uint>(), new ExactComparer<uint>());
break;
case TensorElementType.Int16:
Assert.Equal(expectedValue.AsTensor<short>(), result.AsTensor<short>(), new ExactComparer<short>());
break;
case TensorElementType.UInt16:
Assert.Equal(expectedValue.AsTensor<ushort>(), result.AsTensor<ushort>(), new ExactComparer<ushort>());
break;
case TensorElementType.Int64:
Assert.Equal(expectedValue.AsTensor<long>(), result.AsTensor<long>(), new ExactComparer<long>());
break;
case TensorElementType.UInt64:
Assert.Equal(expectedValue.AsTensor<ulong>(), result.AsTensor<ulong>(), new ExactComparer<ulong>());
break;
case TensorElementType.UInt8:
Assert.Equal(expectedValue.AsTensor<byte>(), result.AsTensor<byte>(), new ExactComparer<byte>());
break;
case TensorElementType.Int8:
Assert.Equal(result.AsTensor<sbyte>(), result.AsTensor<sbyte>(), new ExactComparer<sbyte>());
break;
case TensorElementType.Bool:
Assert.Equal(expectedValue.AsTensor<bool>(), result.AsTensor<bool>(), new ExactComparer<bool>());
break;
case TensorElementType.Float16:
Assert.Equal(expectedValue.AsTensor<Float16>(), result.AsTensor<Float16>(), new Float16Comparer { tolerance = 2 });
break;
case TensorElementType.BFloat16:
Assert.Equal(expectedValue.AsTensor<BFloat16>(), result.AsTensor<BFloat16>(), new BFloat16Comparer { tolerance = 2 });
break;
case TensorElementType.String:
Assert.Equal(expectedValue.AsTensor<string>(), result.AsTensor<string>(), new ExactComparer<string>());
break;
default:
Assert.Fail("TestPreTrainedModels does not yet support output of type: " + elementType.ToString());
break;
}
}
private static void VerifySequenceResults(OrtValue resultSequence, OrtValue expectedSequence, NodeMetadata metaData)
{
var allocator = OrtAllocator.DefaultInstance;
Assert.Equal(OnnxValueType.ONNX_TYPE_SEQUENCE, resultSequence.OnnxType);
Assert.Equal(OnnxValueType.ONNX_TYPE_SEQUENCE, expectedSequence.OnnxType);
var elementMeta = metaData.AsSequenceMetadata().ElementMeta;
var resultCount = resultSequence.GetValueCount();
Assert.Equal(expectedSequence.GetValueCount(), resultCount);
using (var cleanUp = new DisposableListTest<IDisposable>())
{
for (int i = 0; i < resultCount; ++i)
{
var resultItem = resultSequence.GetValue(i, allocator);
cleanUp.Add(resultItem);
var expectedItem = expectedSequence.GetValue(i, allocator);
cleanUp.Add(expectedItem);
Assert.Equal(elementMeta.OnnxValueType, expectedItem.OnnxType);
Assert.Equal(elementMeta.OnnxValueType, resultItem.OnnxType);
switch (elementMeta.OnnxValueType)
{
case OnnxValueType.ONNX_TYPE_TENSOR:
VerifyTensorResults(elementMeta.ElementDataType, resultItem, expectedItem);
break;
case OnnxValueType.ONNX_TYPE_SEQUENCE:
{
VerifySequenceResults(resultItem, expectedItem, elementMeta);
}
break;
default:
Assert.Fail($"VerifySequenceResults cannot handle Onnxtype: {elementMeta.OnnxValueType}");
break;
}
}
}
}
private static void VerifyTensorResults(TensorElementType expectedElementType, OrtValue result, OrtValue expectedValue)
{
Assert.True(result.IsTensor);
Assert.True(expectedValue.IsTensor);
var resultTypeShape = result.GetTensorTypeAndShape();
var expectedTypeShape = expectedValue.GetTensorTypeAndShape();
Assert.Equal(expectedElementType, resultTypeShape.ElementDataType);
Assert.Equal(expectedElementType, expectedTypeShape.ElementDataType);
Assert.Equal(expectedTypeShape.Shape, resultTypeShape.Shape);
if (expectedElementType == TensorElementType.String)
{
var resStrings = result.GetStringTensorAsArray();
var expStrings = expectedValue.GetStringTensorAsArray();
Assert.Equal(expStrings, resStrings);
return;
}
switch (expectedElementType)
{
case TensorElementType.Float:
Assert.Equal(expectedValue.GetTensorDataAsSpan<float>().ToArray(), result.GetTensorDataAsSpan<float>().ToArray(),
new FloatComparer());
break;
case TensorElementType.Double:
Assert.Equal(expectedValue.GetTensorDataAsSpan<double>().ToArray(), result.GetTensorDataAsSpan<double>().ToArray(),
new DoubleComparer());
break;
case TensorElementType.Int32:
Assert.Equal(expectedValue.GetTensorDataAsSpan<int>().ToArray(), result.GetTensorDataAsSpan<int>().ToArray(), new ExactComparer<int>());
break;
case TensorElementType.UInt32:
Assert.Equal(expectedValue.GetTensorDataAsSpan<uint>().ToArray(), result.GetTensorDataAsSpan<uint>().ToArray(), new ExactComparer<uint>());
break;
case TensorElementType.Int16:
Assert.Equal(expectedValue.GetTensorDataAsSpan<short>().ToArray(), result.GetTensorDataAsSpan<short>().ToArray(), new ExactComparer<short>());
break;
case TensorElementType.UInt16:
Assert.Equal(expectedValue.GetTensorDataAsSpan<ushort>().ToArray(), result.GetTensorDataAsSpan<ushort>().ToArray(), new ExactComparer<ushort>());
break;
case TensorElementType.Int64:
Assert.Equal(expectedValue.GetTensorDataAsSpan<long>().ToArray(), result.GetTensorDataAsSpan<long>().ToArray(), new ExactComparer<long>());
break;
case TensorElementType.UInt64:
Assert.Equal(expectedValue.GetTensorDataAsSpan<ulong>().ToArray(), result.GetTensorDataAsSpan<ulong>().ToArray(), new ExactComparer<ulong>());
break;
case TensorElementType.UInt8:
Assert.Equal(expectedValue.GetTensorDataAsSpan<byte>().ToArray(), result.GetTensorDataAsSpan<byte>().ToArray(), new ExactComparer<byte>());
break;
case TensorElementType.Int8:
Assert.Equal(expectedValue.GetTensorDataAsSpan<sbyte>().ToArray(), result.GetTensorDataAsSpan<sbyte>().ToArray(), new ExactComparer<sbyte>());
break;
case TensorElementType.Bool: