This is a python repository implementing the Local Parametric Approach from Spokoiny, V. (2009a).
You can find a list of scripts located in the scripts
folder.
model
: dict, model parameters:name
: str, ex:"garch"
params
: dict, ex:{"p": 1, "q": 1}
data
: dict, data parameters:path
: str, path to the data filefeature
: str, name of the feature, ex:"log_returns"
preprocessing
: dict, preprocessing configuration, ex:{"name": "StandardScaler"}
bootstrap
: dict, parameters for the multiplier bootstratp:generate
: str, name of the distribution from which to generate multiplier bootstrap weights, ex:normal
num_sim
: int, number of simulationnjobs
: int, number of parallel jobs
min_steps
: int, mininum distance between two break point testmax_trial
: int, maximum attempts to estimate MLEmaxiter
: int, maximum number of iterations to perform to estimate MLE
References
Spokoiny, V. (1998). Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice, The Annals of Statistics 26: 1356–78.
Spokoiny, V. (2009a). Multiscale local change point detection with applications to value-at-risk, The Annals of Statistics 37: 1405–1436.
Spokoiny, V. and Zhilova, M. (2015). Bootstrap confidence sets under model misspecification, The Annals of Statistics 43(1): 2653–2675
Spilak, Bruno and Härdle, Wolfgang Karl, Tail-Risk Protection: Machine Learning Meets Modern Econometrics (October 7, 2020). Spilak, B., Härdle, W. K. (2021). In: Lee, CF., Lee, A.C. (eds) Encyclopedia of Finance. Springer, Cham. https://doi.org/10.1007/978-3-030-73443-5_94-1