diff --git a/src/QuantEcon.jl b/src/QuantEcon.jl index 1abfcf4b..bd5c8f5b 100644 --- a/src/QuantEcon.jl +++ b/src/QuantEcon.jl @@ -53,7 +53,8 @@ export discrete_var, Even, Quantile, Quadrature, # modeltools - AbstractUtility, LogUtility, CRRAUtility, CFEUtility, EllipticalUtility, derivative, + AbstractUtility, LogUtility, CRRAUtility, CFEUtility, EllipticalUtility, + derivative, # gth_solve gth_solve, @@ -96,8 +97,8 @@ export smooth, periodogram, ar_periodogram, # util - meshgrid, gridmake, gridmake!, ckron, is_stable, num_compositions, simplex_grid, simplex_index, - next_k_array!, k_array_rank, + meshgrid, gridmake, gridmake!, ckron, is_stable, num_compositions, + simplex_grid, simplex_index, next_k_array!, k_array_rank, # robustlq RBLQ, @@ -109,7 +110,7 @@ export # quad qnwlege, qnwcheb, qnwsimp, qnwtrap, qnwbeta, qnwgamma, qnwequi, qnwnorm, - qnwunif, qnwlogn, qnwmonomial1, qnwmonomial2, + qnwunif, qnwlogn, qnwmonomial1, qnwmonomial2, qnwdist, quadrect, do_quad, diff --git a/src/quad.jl b/src/quad.jl index a0548695..feeea4f2 100644 --- a/src/quad.jl +++ b/src/quad.jl @@ -431,13 +431,13 @@ function qnwgamma(n::Int, a::Real=1.0, b::Real=1.0) end # rootfinding iterations - it = 0 pp = 0.0 p2 = 0.0 - for it = 1:maxit + err = 100.0 + for it in 1:maxit p1 = 1.0 p2 = 0.0 - for j=1:n + for j in 1:n # Recurrance relation for Laguerre polynomials p3 = p2 p2 = p1 @@ -446,12 +446,13 @@ function qnwgamma(n::Int, a::Real=1.0, b::Real=1.0) pp = (n*p1-(n+a)*p2)./z z1 = z z = z1-p1 ./ pp - if abs(z - z1) < 3e-14 + err = abs(z - z1) + if err < 3e-14 break end - end - if it >= maxit + end + if err > 3e-14 error("failure to converge.") end @@ -870,3 +871,62 @@ function qnwmonomial2(vcv::AbstractMatrix) 1/(n+2)^2 * ones(size(z2, 1))) return ϵj, ωj end + + +function _quadnodes( + d::Distributions.ContinuousUnivariateDistribution, N::Int, + q0::Real, qN::Real, ::Union{Even,Type{Even}} + ) + collect(linspace(quantile(d, q0), quantile(d, qN), N)) +end + +function _quadnodes( + d::Distributions.ContinuousUnivariateDistribution, N::Int, + q0::Real, qN::Real, ::Union{Quantile,Type{Quantile}} + ) + quantiles = linspace(q0, qN, N) + z = quantile.(d, quantiles) +end + +""" + qnwdist( + d::Distributions.ContinuousUnivariateDistribution, N::Int, + q0::Real=0.001, qN::Real=0.999, method::Union{T,Type{T}}=Quantile + ) where T + +Construct `N` quadrature weights and nodes for distribution `d` from the +quantile `q0` to the quantile `qN`. `method` can be one of: + +- `Even`: nodes will be evenly spaced between the quantiles +- `Quantile`: nodes will be placed at evenly spaced quantile values + +To construct the weights, consider splitting the nodes into cells centered at +each node. Specifically, let notation `z_i` mean the `i`th node and let +`z_{i-1/2}` be 1/2 between nodes `z_{i-1}` and `z_i`. Then, weights are +determined as follows: + +- `weights[1] = cdf(d, z_{1+1/2})` +- `weights[N] = 1 - cdf(d, z_{N-1/2})` +- `weights[i] = cdf(d, z_{i+1/2}) - cdf(d, z_{i-1/2})` for all i in 2:N-1 + +In effect, this strategy assigns node `i` all the probability associated with a +random variable occuring within the node `i`s cell. + +The weights always sum to 1, so they can be used as a proper probability +distribution. This means that `E[f(x) | x ~ d] ≈ dot(f.(nodes), weights)`. +""" +function qnwdist( + d::Distributions.ContinuousUnivariateDistribution, N::Int, + q0::Real=0.001, qN::Real=0.999, method::Union{T,Type{T}}=Quantile + ) where T + + z = _quadnodes(d, N, q0, qN, method) + zprob = zeros(N) + + for i in 2:N-1 + zprob[i] = cdf(d, (z[i] + z[i+1])/2) - cdf(d, (z[i] + z[i-1])/2) + end + zprob[1] = cdf(d, (z[1] + z[2])/2) + zprob[end] = 1 - cdf(d, (z[end-1] + z[end])/2) + return z, zprob +end