-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
152 lines (122 loc) · 5.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import torch
import gym
import argparse
import os
import utils
import TD3
import OurDDPG
import DDPG
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def eval_policy(policy, env_name, seed, eval_episodes=10):
eval_env = gym.make(env_name)
eval_env.seed(seed + 100)
avg_reward = 0.
for _ in range(eval_episodes):
state, done = eval_env.reset(), False
while not done:
action = policy.select_action(np.array(state))
state, reward, done, _ = eval_env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
print("---------------------------------------")
print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}")
print("---------------------------------------")
return avg_reward
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--policy", default="TD3") # Policy name (TD3, DDPG or OurDDPG)
parser.add_argument("--env", default="HalfCheetah-v2") # OpenAI gym environment name
parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--start_timesteps", default=25e3, type=int)# Time steps initial random policy is used
parser.add_argument("--eval_freq", default=5e3, type=int) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=1e6, type=int) # Max time steps to run environment
parser.add_argument("--expl_noise", default=0.1) # Std of Gaussian exploration noise
parser.add_argument("--batch_size", default=256, type=int) # Batch size for both actor and critic
parser.add_argument("--discount", default=0.99) # Discount factor
parser.add_argument("--tau", default=0.005) # Target network update rate
parser.add_argument("--policy_noise", default=0.2) # Noise added to target policy during critic update
parser.add_argument("--noise_clip", default=0.5) # Range to clip target policy noise
parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates
parser.add_argument("--save_model", action="store_true") # Save model and optimizer parameters
parser.add_argument("--load_model", default="") # Model load file name, "" doesn't load, "default" uses file_name
args = parser.parse_args()
file_name = f"{args.policy}_{args.env}_{args.seed}"
print("---------------------------------------")
print(f"Policy: {args.policy}, Env: {args.env}, Seed: {args.seed}")
print("---------------------------------------")
if not os.path.exists("./results"):
os.makedirs("./results")
if args.save_model and not os.path.exists("./models"):
os.makedirs("./models")
env = gym.make(args.env)
# Set seeds
env.seed(args.seed)
env.action_space.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
kwargs = {
"state_dim": state_dim,
"action_dim": action_dim,
"max_action": max_action,
"discount": args.discount,
"tau": args.tau,
}
# Initialize policy
if args.policy == "TD3":
# Target policy smoothing is scaled wrt the action scale
kwargs["policy_noise"] = args.policy_noise * max_action
kwargs["noise_clip"] = args.noise_clip * max_action
kwargs["policy_freq"] = args.policy_freq
policy = TD3.TD3(**kwargs)
elif args.policy == "OurDDPG":
policy = OurDDPG.DDPG(**kwargs)
elif args.policy == "DDPG":
policy = DDPG.DDPG(**kwargs)
if args.load_model != "":
policy_file = file_name if args.load_model == "default" else args.load_model
policy.load(f"./models/{policy_file}")
replay_buffer = utils.ReplayBuffer(state_dim, action_dim)
# Evaluate untrained policy
evaluations = [eval_policy(policy, args.env, args.seed)]
state, done = env.reset(), False
episode_reward = 0
episode_timesteps = 0
episode_num = 0
for t in range(int(args.max_timesteps)):
episode_timesteps += 1
# Select action randomly or according to policy
if t < args.start_timesteps:
action = env.action_space.sample()
else:
action = (
policy.select_action(np.array(state))
+ np.random.normal(0, max_action * args.expl_noise, size=action_dim)
).clip(-max_action, max_action)
# Perform action
next_state, reward, done, _ = env.step(action)
done_bool = float(done) if episode_timesteps < env._max_episode_steps else 0
# Store data in replay buffer
replay_buffer.add(state, action, next_state, reward, done_bool)
state = next_state
episode_reward += reward
# Train agent after collecting sufficient data
if t >= args.start_timesteps:
policy.train(replay_buffer, args.batch_size)
if done:
# +1 to account for 0 indexing. +0 on ep_timesteps since it will increment +1 even if done=True
print(f"Total T: {t+1} Episode Num: {episode_num+1} Episode T: {episode_timesteps} Reward: {episode_reward:.3f}")
# Reset environment
state, done = env.reset(), False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
# Evaluate episode
if (t + 1) % args.eval_freq == 0:
evaluations.append(eval_policy(policy, args.env, args.seed))
np.save(f"./results/{file_name}", evaluations)
if args.save_model: policy.save(f"./models/{file_name}")