-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_module_ge.py
248 lines (206 loc) · 10.8 KB
/
data_module_ge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import torch
import pdb
from torch import nn
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
import datasets
import pandas as pd
from utils import get_model_identifiers_from_yaml, add_dataset_index
def convert_raw_data_to_model_format(tokenizer, max_length, question, answer, model_configs):
question_start_token, question_end_token, answer_token = model_configs['question_start_tag'], model_configs['question_end_tag'], model_configs['answer_tag']
new_question = question_start_token + question + question_end_token
new_answer = answer_token + answer
full_text = new_question + new_answer
num_question_tokens = len(tokenizer.tokenize(new_question, add_special_tokens=True))
encoded = tokenizer(
full_text,
add_special_tokens=True,
max_length=max_length,
truncation=True,
)
pad_length = max_length - len(encoded.input_ids)
pad_input_ids = encoded['input_ids'] + [tokenizer.eos_token_id] * pad_length
pad_attention_mask = encoded['attention_mask'] + [0] * pad_length
if len(encoded.input_ids) == max_length:
label = encoded.input_ids
else:
label = encoded['input_ids'] + [tokenizer.eos_token_id] + [-100] * (pad_length-1)
#change label to -100 for question tokens
for i in range(num_question_tokens): label[i] = -100
return torch.tensor(pad_input_ids),torch.tensor(label),torch.tensor(pad_attention_mask)
class TextDatasetQA(Dataset):
def __init__(self, data_path, tokenizer, model_family, max_length=512, split = None, question_key='question', answer_key='answer'):
super(TextDatasetQA, self).__init__()
self.tokenizer = tokenizer
self.max_length = max_length
# data_len = len(datasets.load_dataset(data_path, split)["train"])
# self.data = datasets.load_dataset(data_path, split)["train"].select(range(min(100, data_len)))
self.data = datasets.load_dataset(data_path, split)["train"]
self.data = add_dataset_index(self.data)
self.model_configs = get_model_identifiers_from_yaml(model_family)
self.qk = question_key
self.ak = answer_key
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
question = self.data[idx][self.qk]
answers = self.data[idx][self.ak]
indices = self.data[idx]['index']
if isinstance(answers, str):
answers = [answers]
pad_input_ids_list = []
label_list = []
pad_attention_mask_list = []
for answer in answers:
converted_data = convert_raw_data_to_model_format(self.tokenizer, self.max_length, question, answer, self.model_configs)
pad_input_ids_list.append(converted_data[0])
label_list.append(converted_data[1])
pad_attention_mask_list.append(converted_data[2])
return torch.stack(pad_input_ids_list).squeeze(),\
torch.stack(label_list).squeeze(),\
torch.stack(pad_attention_mask_list).squeeze(),\
torch.tensor(indices)
class TextForgetDatasetQA2(Dataset):
def __init__(self, data_path, tokenizer, model_family, max_length=512, split = "forget10", loss_type="att_"):
super(TextForgetDatasetQA2, self).__init__()
self.tokenizer = tokenizer
self.max_length = max_length
self.forget_data = datasets.load_dataset(data_path, split)["train"]
retain_split = "retain" + str(100 - int(split.replace("forget", ""))).zfill(2)
self.retain_data = datasets.load_dataset(data_path, retain_split)["train"]
data_f=pd.DataFrame(self.retain_data).iloc[400:].reset_index(drop=True) # seperate 400 data point for evaluations
self.retain_data_train = datasets.Dataset.from_pandas(data_f)
self.model_configs = get_model_identifiers_from_yaml(model_family)
self.loss_type = loss_type
if self.loss_type == "idk":
self.split1, self.split2 = "idk", "retain"
self.idontknowfile = "data/idontknow.jsonl"
self.idk = open(self.idontknowfile, "r").readlines()
############### from qz
elif 'att_' in self.loss_type:
attention_words = torch.load('../tofu_attention/attention_idx' + split + '.pth')
if len(attention_words) != len(self.forget_data):
raise RuntimeError('The lengths of attention words do not match the dataset!')
self.forget_data = self.forget_data.add_column('critical_word', [attention_words[_] for _ in attention_words])
self.split1, self.split2 = "forget", "retain"
###############
else:
self.split1, self.split2 = "forget", "retain"
def __len__(self):
return len(self.forget_data)
def __getitem__(self, idx):
rets = []
for data_type in [self.split1, self.split2]:
#use questions from forget set if split is idk or forget
if data_type == "retain":
data = self.retain_data_train
idx = (idx + torch.randint(0, len(self.retain_data_train), (1,)).item()) % len(self.retain_data_train)
else:
data=self.forget_data
idx=idx
question = data[idx]['question']
answer = data[idx]['answer']
if data_type == "idk":
rand_pos = torch.randint(0, len(self.idk), (1,)).item()
answer = self.idk[rand_pos].strip()
############### from qz , here we have a copy of convert_raw_data_to_model_format, just looking to those with if 'att_' in self.loss_type:
question_start_token, question_end_token, answer_token = self.model_configs['question_start_tag'], self.model_configs['question_end_tag'], self.model_configs['answer_tag']
new_question = question_start_token + question + question_end_token
new_answer = answer_token + answer
full_text = new_question + new_answer
num_question_tokens = len(self.tokenizer.tokenize(new_question, add_special_tokens=True))
#print(num_question_tokens)
if data_type=="forget":
if 'att_' in self.loss_type:
attention_word=self.forget_data[idx]['critical_word']
asciied_answer = [''.join([_ for _ in __ if _.isascii()]) for __ in self.tokenizer.tokenize(new_answer)]
critical_idx_tokens = [num_question_tokens + idx for idx, _ in enumerate(asciied_answer) if _ in attention_word and _ != '' and (len(_)>=2 or _.isnumeric())]
#print(len(self.tokenizer.tokenize(new_answer)))
#print(len(asciied_answer))
#print(critical_idx_tokens)
encoded = self.tokenizer(
full_text,
add_special_tokens=True,
max_length=self.max_length,
truncation=True,
)
pad_length = self.max_length - len(encoded.input_ids)
pad_input_ids = encoded['input_ids'] + [self.tokenizer.eos_token_id] * pad_length
pad_attention_mask = encoded['attention_mask'] + [0] * pad_length
if len(encoded.input_ids) == self.max_length:
label = encoded.input_ids
else:
label = encoded['input_ids'] + [self.tokenizer.eos_token_id] + [-100] * (pad_length-1)
#change label to -100 for question tokens
for i in range(num_question_tokens): label[i] = -100
#print(label)
if data_type=="forget":
if 'att_' in self.loss_type:
for idx, ele in enumerate(label):
if idx not in critical_idx_tokens: label[idx] = -100
#print(label)
converted_data = torch.tensor(pad_input_ids),torch.tensor(label),torch.tensor(pad_attention_mask)
rets.append(converted_data)
return rets
def collate_fn(batch):
input_ids, attention_masks = zip(*batch)
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=-100)
attention_masks = pad_sequence(attention_masks, batch_first=True, padding_value=0)
return input_ids, attention_masks
def custom_data_collator(samples):
input_ids = [s[0] for s in samples]
labels = [s[1] for s in samples]
attention_mask = [s[2] for s in samples]
return torch.stack(input_ids), torch.stack(labels), torch.stack(attention_mask)
def custom_data_collator_with_indices(samples):
input_ids = [s[0] for s in samples]
labels = [s[1] for s in samples]
attention_mask = [s[2] for s in samples]
indices = [s[3] for s in samples]
return torch.stack(input_ids), torch.stack(labels), torch.stack(attention_mask), torch.stack(indices)
def get_batch_loss(output, labels):
shifted_labels = labels[..., 1:].contiguous()
output = output[..., :-1, :].contiguous()
loss_function = nn.CrossEntropyLoss(ignore_index=-100, reduction='none')
# get the sum loss for each sequence in a batch
loss = loss_function(output.transpose(-1,-2), shifted_labels).sum(dim=-1)
return loss
def model_mix(model,before,after,update_ratio):
for name,parameter in model.named_parameters():
parameter.data=update_ratio*before[name[:]].cuda()+(1-update_ratio)*after[name[:]].cuda()
return model
'''
import hydra, os
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, set_seed
@hydra.main(version_base=None, config_path="config", config_name="forget")
def main(cfg):
# ------------ DDP Pytorch 分布式训练 ----------- #
num_devices = int(os.environ.get('WORLD_SIZE', 1)) # os.environ 获取环境变量
print(f"num_devices: {num_devices}")
if os.environ.get('LOCAL_RANK') is not None:
local_rank = int(os.environ.get('LOCAL_RANK', '0'))
device_map = {'': local_rank}
else: local_rank = 0
os.environ["WANDB_DISABLED"] = "true"
# --------------------------------------------- #
model_cfg = get_model_identifiers_from_yaml(cfg.model_family)
model_id = model_cfg["hf_key"] # huggingface key
if cfg.model_path is None:
cfg.model_path = model_cfg["ft_model_path"]
# save cfg in cfg.save_dir
if local_rank == 0:
with open(f"{cfg.save_dir}/config.yaml", "w") as file:
# omegaconf.save(cfg, file)
pass
if os.path.exists(cfg.save_dir):
print("Directory already exists")
if not cfg.overwrite_dir:
exit()
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
torch_format_dataset = TextForgetDatasetQA2(cfg.data_path, tokenizer=tokenizer, model_family = cfg.model_family, max_length=500, split='forget01', loss_type='att_')
#print(torch_format_dataset[1])
#print(torch_format_dataset[0])
if __name__ == "__main__":
main()
'''