-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpred_code_transformer.py
204 lines (163 loc) · 7.24 KB
/
pred_code_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import numpy as np
from pathlib import Path
import tokenize
from io import StringIO
import os
# Tokenizer for Python code
class CodeTokenizer:
def __init__(self, vocab_size=5000):
self.vocab_size = vocab_size
self.token2idx = {}
self.idx2token = {}
self.vocab_freq = {}
def fit(self, code_files):
# Collect all tokens from code files
for file in code_files:
with open(file, 'r', encoding='utf-8') as f:
code = f.read()
tokens = self._tokenize_code(code)
for token in tokens:
self.vocab_freq[token] = self.vocab_freq.get(token, 0) + 1
# Build vocabulary
sorted_tokens = sorted(self.vocab_freq.items(), key=lambda x: x[1], reverse=True)
for idx, (token, _) in enumerate(sorted_tokens[:self.vocab_size-2]):
self.token2idx[token] = idx + 2
self.idx2token[idx + 2] = token
# Add special tokens
self.token2idx['<PAD>'] = 0
self.token2idx['<UNK>'] = 1
self.idx2token[0] = '<PAD>'
self.idx2token[1] = '<UNK>'
def _tokenize_code(self, code):
tokens = []
try:
for tok in tokenize.generate_tokens(StringIO(code).readline):
if tok.string.strip():
tokens.append(tok.string)
except:
pass
return tokens
def encode(self, code):
tokens = self._tokenize_code(code)
return [self.token2idx.get(token, 1) for token in tokens] # 1 is <UNK>
def decode(self, indices):
return ' '.join(self.idx2token.get(idx, '<UNK>') for idx in indices)
# Dataset
class CodeDataset(Dataset):
def __init__(self, code_files, tokenizer, seq_length=512):
self.tokenizer = tokenizer
self.seq_length = seq_length
self.data = []
for file in code_files:
with open(file, 'r', encoding='utf-8') as f:
code = f.read()
tokens = self.tokenizer.encode(code)
# Create sequences
for i in range(0, len(tokens) - seq_length):
input_seq = tokens[i:i + seq_length]
target_seq = tokens[i + 1:i + seq_length + 1]
self.data.append((input_seq, target_seq))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
input_seq, target_seq = self.data[idx]
return torch.tensor(input_seq), torch.tensor(target_seq)
# Transformer Model
class CodeTransformer(nn.Module):
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoder = PositionalEncoding(d_model, dropout)
encoder_layers = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)
self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers)
self.decoder = nn.Linear(d_model, vocab_size)
self.d_model = d_model
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embedding.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src, src_mask=None):
src = self.embedding(src) * np.sqrt(self.d_model)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, src_mask)
output = self.decoder(output)
return output
# Positional Encoding
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-np.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0)]
return self.dropout(x)
# Training function
def train_model(model, train_loader, criterion, optimizer, device, epochs=30):
model.train()
for epoch in range(epochs):
total_loss = 0
for batch_idx, (input_seq, target_seq) in enumerate(train_loader):
input_seq, target_seq = input_seq.to(device), target_seq.to(device)
optimizer.zero_grad()
output = model(input_seq)
loss = criterion(output.view(-1, output.size(-1)), target_seq.view(-1))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
total_loss += loss.item()
if batch_idx % 100 == 0:
print(f'Epoch: {epoch}, Batch: {batch_idx}, Loss: {loss.item():.4f}')
avg_loss = total_loss / len(train_loader)
print(f'Epoch: {epoch}, Average Loss: {avg_loss:.4f}')
# Code completion function
def complete_code(model, tokenizer, input_code, max_length=50, temperature=0.8):
device = next(model.parameters()).device # Get the device of the model
model.eval()
tokens = tokenizer.encode(input_code)
input_tensor = torch.tensor(tokens).unsqueeze(0).to(device) # Move tensor to the same device as model
with torch.no_grad():
for _ in range(max_length):
output = model(input_tensor)
next_token_logits = output[0, -1, :] / temperature
next_token = torch.multinomial(F.softmax(next_token_logits, dim=-1), 1)
input_tensor = torch.cat([input_tensor, next_token.unsqueeze(0)], dim=1)
if next_token.item() == tokenizer.token2idx.get('<PAD>'):
break
return tokenizer.decode(input_tensor[0].cpu().tolist()) # Move back to CPU for decoding
# Main execution
def main():
# Setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
code_files = [str(p) for p in Path('/home/xlisp/EmacsPyPro/jim-emacs-fun-py').glob('**/*.py')]
# Initialize tokenizer and create dataset
tokenizer = CodeTokenizer()
tokenizer.fit(code_files)
dataset = CodeDataset(code_files, tokenizer)
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
# Initialize model
model = CodeTransformer(len(tokenizer.token2idx)).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
# Train model
train_model(model, train_loader, criterion, optimizer, device)
# Save model
torch.save(model.state_dict(), 'code_completion_model.pth')
# Example usage
input_code = "def get" #"def hello_world():"
completed_code = complete_code(model, tokenizer, input_code)
print(f"Input: {input_code}")
print(f"Completed: {completed_code}")
if __name__ == "__main__":
main()