forked from gpt-engineer-org/gpt-engineer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ai.py
197 lines (159 loc) · 6.27 KB
/
ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from __future__ import annotations
import json
import logging
from dataclasses import dataclass
from typing import List, Optional, Union
import openai
import tiktoken
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.chat_models.base import BaseChatModel
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage,
messages_from_dict,
messages_to_dict,
)
Message = Union[AIMessage, HumanMessage, SystemMessage]
logger = logging.getLogger(__name__)
@dataclass
class TokenUsage:
step_name: str
in_step_prompt_tokens: int
in_step_completion_tokens: int
in_step_total_tokens: int
total_prompt_tokens: int
total_completion_tokens: int
total_tokens: int
class AI:
def __init__(self, model_name="gpt-4", temperature=0.1):
self.temperature = temperature
self.model_name = fallback_model(model_name)
self.llm = create_chat_model(self.model_name, temperature)
self.tokenizer = get_tokenizer(self.model_name)
# initialize token usage log
self.cumulative_prompt_tokens = 0
self.cumulative_completion_tokens = 0
self.cumulative_total_tokens = 0
self.token_usage_log = []
def start(self, system: str, user: str, step_name: str) -> List[Message]:
messages: List[Message] = [
SystemMessage(content=system),
HumanMessage(content=user),
]
return self.next(messages, step_name=step_name)
def fsystem(self, msg: str) -> SystemMessage:
return SystemMessage(content=msg)
def fuser(self, msg: str) -> HumanMessage:
return HumanMessage(content=msg)
def fassistant(self, msg: str) -> AIMessage:
return AIMessage(content=msg)
def next(
self,
messages: List[Message],
prompt: Optional[str] = None,
*,
step_name: str,
) -> List[Message]:
if prompt:
messages.append(self.fuser(prompt))
logger.debug(f"Creating a new chat completion: {messages}")
callsbacks = [StreamingStdOutCallbackHandler()]
response = self.llm(messages, callbacks=callsbacks) # type: ignore
messages.append(response)
logger.debug(f"Chat completion finished: {messages}")
self.update_token_usage_log(
messages=messages, answer=response.content, step_name=step_name
)
return messages
@staticmethod
def serialize_messages(messages: List[Message]) -> str:
return json.dumps(messages_to_dict(messages))
@staticmethod
def deserialize_messages(jsondictstr: str) -> List[Message]:
return list(messages_from_dict(json.loads(jsondictstr))) # type: ignore
def update_token_usage_log(
self, messages: List[Message], answer: str, step_name: str
) -> None:
prompt_tokens = self.num_tokens_from_messages(messages)
completion_tokens = self.num_tokens(answer)
total_tokens = prompt_tokens + completion_tokens
self.cumulative_prompt_tokens += prompt_tokens
self.cumulative_completion_tokens += completion_tokens
self.cumulative_total_tokens += total_tokens
self.token_usage_log.append(
TokenUsage(
step_name=step_name,
in_step_prompt_tokens=prompt_tokens,
in_step_completion_tokens=completion_tokens,
in_step_total_tokens=total_tokens,
total_prompt_tokens=self.cumulative_prompt_tokens,
total_completion_tokens=self.cumulative_completion_tokens,
total_tokens=self.cumulative_total_tokens,
)
)
def format_token_usage_log(self) -> str:
result = "step_name,"
result += "prompt_tokens_in_step,completion_tokens_in_step,total_tokens_in_step"
result += ",total_prompt_tokens,total_completion_tokens,total_tokens\n"
for log in self.token_usage_log:
result += log.step_name + ","
result += str(log.in_step_prompt_tokens) + ","
result += str(log.in_step_completion_tokens) + ","
result += str(log.in_step_total_tokens) + ","
result += str(log.total_prompt_tokens) + ","
result += str(log.total_completion_tokens) + ","
result += str(log.total_tokens) + "\n"
return result
def num_tokens(self, txt: str) -> int:
return len(self.tokenizer.encode(txt))
def num_tokens_from_messages(self, messages: List[Message]) -> int:
"""Returns the number of tokens used by a list of messages."""
n_tokens = 0
for message in messages:
n_tokens += (
4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
)
n_tokens += self.num_tokens(message.content)
n_tokens += 2 # every reply is primed with <im_start>assistant
return n_tokens
def fallback_model(model: str) -> str:
try:
openai.Model.retrieve(model)
return model
except openai.InvalidRequestError:
print(
f"Model {model} not available for provided API key. Reverting "
"to gpt-3.5-turbo. Sign up for the GPT-4 wait list here: "
"https://openai.com/waitlist/gpt-4-api\n"
)
return "gpt-3.5-turbo"
def create_chat_model(model: str, temperature) -> BaseChatModel:
if model == "gpt-4":
return ChatOpenAI(
model="gpt-4",
temperature=temperature,
streaming=True,
client=openai.ChatCompletion,
)
elif model == "gpt-3.5-turbo":
return ChatOpenAI(
model="gpt-3.5-turbo",
temperature=temperature,
streaming=True,
client=openai.ChatCompletion,
)
else:
raise ValueError(f"Model {model} is not supported.")
def get_tokenizer(model: str):
if "gpt-4" in model or "gpt-3.5" in model:
return tiktoken.encoding_for_model(model)
logger.debug(
f"No encoder implemented for model {model}."
"Defaulting to tiktoken cl100k_base encoder."
"Use results only as estimates."
)
return tiktoken.get_encoding("cl100k_base")
def serialize_messages(messages: List[Message]) -> str:
return AI.serialize_messages(messages)