-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathemotion.py
177 lines (114 loc) · 4.29 KB
/
emotion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import tensorflow as tf
import h5py
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D
from tensorflow.keras.layers import Dense, Activation, Dropout, Flatten
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt
import os
sess = tf.Session()
#variables
num_classes = 7 #angry, disgust, fear, happy, sad, surprise, neutral
batch_size = 256
epochs = 5
#------------------------------
# In[3]:
with open("/Users/divalicious/Desktop/Emotional Analysis/challenges-in-representation-learning-facial-expression-recognition-challenge/fer2013/fer2013/fer2013.csv") as f:
content = f.readlines()
lines = np.array(content)
num_of_instances = lines.size
print("number of instances: ",num_of_instances)
# In[7]:
x_train, y_train, x_test, y_test = [], [], [], []
for i in range(1,num_of_instances):
#try:
emotion, img, usage = lines[i].split(",")
val = img.split(" ")
pixels = np.array(val, 'float32')
emotion = tf.keras.utils.to_categorical(emotion, num_classes)
if 'Training' in usage:
y_train.append(emotion)
x_train.append(pixels)
elif 'PublicTest' in usage:
y_test.append(emotion)
x_test.append(pixels)
#except:
# print("", end="")
#------------------------------
#data transformation for train and test sets
x_train = np.array(x_train, 'float32')
y_train = np.array(y_train, 'float32')
x_test = np.array(x_test, 'float32')
y_test = np.array(y_test, 'float32')
x_train /= 255 #normalize inputs between [0, 1]
x_test /= 255
x_train = x_train.reshape(x_train.shape[0], 48, 48, 1)
x_train = x_train.astype('float32')
x_test = x_test.reshape(x_test.shape[0], 48, 48, 1)
x_test = x_test.astype('float32')
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# In[13]:
model = Sequential()
#1st convolution layer
model.add(Conv2D(64, (5, 5), activation='relu', input_shape=(48,48,1)))
model.add(MaxPooling2D(pool_size=(5,5), strides=(2, 2)))
#2nd convolution layer
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(AveragePooling2D(pool_size=(3,3), strides=(2, 2)))
#3rd convolution layer
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(AveragePooling2D(pool_size=(3,3), strides=(2, 2)))
model.add(Flatten())
#fully connected neural networks
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))
# In[17]:
gen = ImageDataGenerator()
train_generator = gen.flow(x_train, y_train, batch_size=batch_size)
model.compile(loss='categorical_crossentropy'
, optimizer=tf.keras.optimizers.Adam()
, metrics=['accuracy']
)
#model.summary()
checkpoint_path = "/Users/divalicious/Desktop/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
# Create a callback that saves the model's weights
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,save_weights_only=True,verbose=1)
model.save_weights(checkpoint_path)
model.fit_generator(train_generator, steps_per_epoch=batch_size, epochs=epochs, callbacks=[cp_callback])
model.save('my_model.h5')
# In[ ]:
train_score = model.evaluate(x_train, y_train, verbose=0)
print('Train loss:', train_score[0])
print('Train accuracy:', 100*train_score[1])
test_score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', test_score[0])
print('Test accuracy:', 100*test_score[1])
# In[18]:
def emotion_analysis(emotions):
objects = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral')
y_pos = np.arange(len(objects))
plt.bar(y_pos, emotions, align='center', alpha=0.5)
plt.xticks(y_pos, objects)
plt.ylabel('percentage')
plt.title('emotion')
plt.show()
img = tf.keras.preprocessing.image.load_img("/Users/divalicious/Desktop/test.jpeg", grayscale=True, target_size=(48, 48))
x = tf.keras.preprocessing.image.img_to_array(img)
x = np.expand_dims(x, axis = 0)
x /= 255
custom = model.predict(x)
emotion_analysis(custom[0])
x = np.array(x, 'float32')
x = x.reshape([48, 48]);
plt.gray()
plt.imshow(x)
plt.show()