-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun-vae.py
50 lines (39 loc) · 1.88 KB
/
run-vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import yaml
from pathlib import Path
from models import *
from experiment import VAELightningModule
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from datasets import CelebAZipDataModule
from pytorch_lightning.plugins import DDPPlugin
from utils import *
print(f"torch: {torch.__version__}")
print(f"CUDA #devices: {torch.cuda.device_count()}")
config = get_config(parse_args().filename)
tb_logger = TensorBoardLogger(save_dir=config['logging_params']['save_dir'],
name=config['model_params']['name'], )
# For reproducibility
seed_everything(config['exp_params']['manual_seed'], True)
model = vae_models[config['model_params']['name']](**config['model_params'])
vae = VAELightningModule(model,
config['exp_params'])
data = CelebAZipDataModule(**config["data_params"], pin_memory=len(config['trainer_params']['gpus']) != 0)
# data.setup()
trainer = Trainer(logger=tb_logger,
callbacks=[
LearningRateMonitor(),
ModelCheckpoint(save_top_k=100,
dirpath=os.path.join(tb_logger.log_dir, "checkpoints"),
every_n_epochs=25,
monitor="val_loss",
save_last=True),
],
# strategy=DDPPlugin(find_unused_parameters=False),
**config['trainer_params'])
Path(f"{tb_logger.log_dir}/Samples").mkdir(exist_ok=True, parents=True)
Path(f"{tb_logger.log_dir}/Reconstructions").mkdir(exist_ok=True, parents=True)
print(f"======= Training {config['model_params']['name']} =======")
trainer.fit(vae, datamodule=data)