-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAmericanOptions.py
70 lines (56 loc) · 2.53 KB
/
AmericanOptions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
import sys
with open('stocks.txt', 'r') as file:
moduledir = file.read().strip()
if moduledir not in sys.path:
sys.path.append(moduledir)
import Stocks
class LongstaffSchwartz:
def __init__(self, option_type, S, K, T, r, sigma, mu):
self.option_type = option_type
self.S = S
self.K = K
self.T = T
self.r = r
self.sigma = sigma
brownian_motion = Stocks.GeometricBrownianMotion(S, mu, sigma, T)
self.disc_cash_flows = self.calculate_disc_cash_flows(brownian_motion.get_paths(), self.K, self.r)
final_cfs = np.zeros((self.disc_cash_flows.shape[1], 1), dtype=float)
for i, row in enumerate(final_cfs):
final_cfs[i] = sum(self.disc_cash_flows[:, i])
self.price = np.mean(final_cfs)
def calculate_disc_cash_flows(self, paths, K, r):
cash_flows = np.zeros_like(paths)
for i in range(0, cash_flows.shape[0]):
if self.option_type == "call":
cash_flows[i] = [max(round(x - K, 2), 0) for x in paths[i]]
elif self.option_type == "put":
cash_flows[i] = [max(-round(x - K, 2), 0) for x in paths[i]]
discounted_cash_flows = np.zeros_like(cash_flows)
T = cash_flows.shape[0] - 1
for t in range(1,T):
in_the_money = paths[t, :] < K
# Run Regression
X = (paths[t, in_the_money])
Xs = np.column_stack([X, X*X])
Y = cash_flows[t-1, in_the_money] * np.exp(-r)
model_sklearn = LinearRegression()
model = model_sklearn.fit(Xs, Y)
conditional_exp = model.predict(Xs)
continuations = np.zeros_like(paths[t, :])
continuations[in_the_money] = conditional_exp
# If continuation is greater in t = 0, then cash flow in t = 1 is zero
cash_flows[t, :] = np.where(continuations> cash_flows[t, :], 0, cash_flows[t, :])
# If stopped ahead of time, subsequent cashflows = 0
exercised_early = continuations < cash_flows[t, :]
cash_flows[0:t, :][:, exercised_early] = 0
discounted_cash_flows[t-1, :] = cash_flows[t-1, :]* np.exp(-r * 3)
discounted_cash_flows[T-1, :] = cash_flows[T-1, :]* np.exp(-r * 1)
return discounted_cash_flows
def main():
option = LongstaffSchwartz(option_type="call", S=100, K=100, T=1, r=0.04, sigma=0.3, mu=0)
print(option.price)
if __name__ == '__main__':
main()