-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gan.py
591 lines (463 loc) · 24 KB
/
train_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
from __future__ import print_function
import argparse
import os
import random
import sys
sys.path.append(os.getcwd())
import pdb
import time
import numpy as np
import json
import progressbar
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
from misc.utils import repackage_hidden, clip_gradient, adjust_learning_rate, \
decode_txt, sample_batch_neg, l2_norm
from onmt.inputters.inputter import build_dataset_iter, lazily_load_dataset, \
_load_fields, _collect_report_features
import data_loader as dl
import misc.model as model
from misc.encoder_att_gate import _netE_att, _netW
import datetime
import opts
from onmt.model_builder import *
import onmt.inputters as inputters
from onmt.utils.misc import tile
# from onmt.train_single import *
additional_device0 = "cuda:0"
additional_device1 = "cuda:1"
parser = argparse.ArgumentParser()
# parser.add_argument('-input_train_h5', default='vi-train.bpe.h5', help='path to label, now hdf5 file')
# parser.add_argument('-input_valid_h5', default='tst2012.bpe.h5', help='path to label, now hdf5 file')
# parser.add_argument('-input_vocab', default='/home/xwshi/easymoses_workspace2/reinforcement_learning/nmt/vi-en-baseline/corpus/vi_bpe.vocab.pt', help='path to dataset, now json file')
# parser.add_argument('-model_path_D', default='model/test/epoch_21.pth', help='folder to output images and model checkpoints')
# parser.add_argument('-model_path_G', default='/home/xwshi/easymoses_workspace2/reinforcement_learning/nmt/vi-en-baseline/train/t2t_baseline_vi_step_30000.pt', help='folder to output images and model checkpoints')
# parser.add_argument('-data', default='/home/xwshi/easymoses_workspace2/reinforcement_learning/nmt/vi-en-baseline/corpus/vi_bpe', help='path to dataset, now json file')
parser.add_argument('-input_train_h5', default='./wmt/wmt14.bpe.shuffle.h5', help='path to label, now hdf5 file')
parser.add_argument('-input_valid_h5', default='./wmt/newstest2014.bpe.h5', help='path to label, now hdf5 file')
parser.add_argument('-input_vocab', default='/home/xwshi/easymoses_workspace2/reinforcement_learning/nmt/wmt_v2/corpus/wmt_bpe.vocab.pt', help='path to dataset, now json file')
parser.add_argument('-model_path_D', default='./model/wmt_gate/epoch_11.pth', help='folder to output images and model checkpoints')
parser.add_argument('-model_path_G', default='/home/xwshi/easymoses_workspace2/reinforcement_learning/nmt/wmt_v2/train/t2t_baseline_wmt_step_348000.pt', help='folder to output images and model checkpoints')
parser.add_argument('-data', default='/home/xwshi/easymoses_workspace2/reinforcement_learning/nmt/wmt_v2/corpus/wmt_bpe', help='path to dataset, now json file')
# parser.add_argument('-input_train_h5', default='./nhfx/nhfx.bpe.h5', help='path to label, now hdf5 file')
# parser.add_argument('-input_valid_h5', default='./nhfx/nist02.bpe.h5', help='path to label, now hdf5 file')
# parser.add_argument('-input_vocab', default='/home/xwshi/easymoses_workspace2/reinforcement_learning/nmt/nhfx_v2/corpus/nhfx_bpe.vocab.pt', help='path to dataset, now json file')
# parser.add_argument('-model_path_D', default='./model/nhfx_gate/epoch_20.pth', help='folder to output images and model checkpoints')
# parser.add_argument('-model_path_G', default='/home/xwshi/easymoses_workspace2/reinforcement_learning/nmt/nhfx_v2/train/t2t_baseline_nhfx_step_110000.pt', help='folder to output images and model checkpoints')
# parser.add_argument('-data', default='/home/xwshi/easymoses_workspace2/reinforcement_learning/nmt/nhfx_v2/corpus/nhfx_bpe', help='path to dataset, now json file')
parser.add_argument('-num_val', default=1000, help='number of image split out as validation set.')
parser.add_argument('-update_LM', action='store_true', help='whether train use the GAN loss.')
parser.add_argument('-update_G', action='store_true', help='whether train use the GAN loss.')
parser.add_argument('-negative_sample', type=int, default=20, help='folder to output images and model checkpoints')
parser.add_argument('-neg_batch_sample', type=int, default=30, help='folder to output images and model checkpoints')
parser.add_argument('-niter', type=int, default=100, help='number of epochs to train for')
parser.add_argument('-start_epoch', type=int, default=0, help='start of epochs to train for')
parser.add_argument('-workers', type=int, help='number of data loading workers', default=1)
parser.add_argument('-adam', action='store_true', help='Whether to use adam (default is rmsprop)')
parser.add_argument('-D_lr', type=float, default=5e-5, help='learning rate for, default=0.00005')
parser.add_argument('-G_lr', type=float, default=5e-5, help='learning rate for, default=0.00005')
parser.add_argument('-LM_lr', type=float, default=5e-5, help='learning rate for, default=0.00005')
parser.add_argument('-beta1', type=float, default=0.5, help='beta1 for adam. default=0.8')
parser.add_argument('-cuda' , action='store_true', help='enables cuda')
parser.add_argument('-debug' , action='store_true', help='debug')
parser.add_argument('-verbose' , action='store_true', help='show the sampled caption')
parser.add_argument('-clip', type=float, default=5, help='gradient clipping')
parser.add_argument('-margin', type=float, default=2, help='number of epochs to train for')
parser.add_argument('-gumble_weight', type=float, default=0.5, help='folder to output images and model checkpoints')
opts.add_md_help_argument(parser)
opts.model_opts(parser)
opts.train_opts(parser)
opt = parser.parse_args()
opt.manualSeed = 1317
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed(opt.manualSeed)
cudnn.benchmark = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
# create new folder.
num_train = -1
if opt.debug == True:
print("debug")
opt.batch_size = 1
num_train = 2
print("debug batch_size", opt.batch_size)
####################################################################################
# Data Loader
####################################################################################
dataset = dl.load_data(input_h5=opt.input_train_h5,
input_vocab=opt.input_vocab, negative_sample = opt.negative_sample, num_val = num_train, split_type = 'train')
dataset_val = dl.load_data(input_h5=opt.input_valid_h5,
input_vocab=opt.input_vocab, negative_sample = opt.negative_sample, num_val = 100, split_type = 'valid')
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size,
shuffle=True, num_workers=int(opt.workers))
dataloader_val = torch.utils.data.DataLoader(dataset_val, batch_size=1,
shuffle=False, num_workers=int(opt.workers))
####################################################################################
# Build the Model
####################################################################################
n_neg = opt.negative_sample
src_vocab_size = dataset.src_vocab_size
tgt_vocab_size = dataset.tgt_vocab_size
src_length = dataset.src_length
tgt_length = dataset.tgt_length + 1
src_stoi = dataset.src_stoi
tgt_stoi = dataset.tgt_stoi
vocab = torch.load(opt.input_vocab)
vocab = dict(vocab)
src_itos = vocab['src'].itos
tgt_itos = vocab['tgt'].itos
start_token = tgt_stoi[inputters.BOS_WORD]
print('src_vocab_size', src_vocab_size)
print('tgt_vocab_size', tgt_vocab_size)
print("src_stoi[\'<unk>\']", src_stoi['<unk>'])
print("src_stoi[\'<blank>\']", src_stoi['<blank>'])
# exit()
def bulid_nmt_model(opt):
# opt = training_opt_postprocessing(opt)
# init_logger(opt.log_file)
# Load checkpoint if we resume from a previous training.
if opt.model_path_G:
logger.info('Loading checkpoint from %s' % opt.model_path_G)
checkpoint = torch.load(opt.model_path_G, map_location=lambda storage, loc: storage)
model_opt = checkpoint['opt']
else:
raise(AssertionError("no nmt model"))
# Peek the fisrt dataset to determine the data_type.
# (All datasets have the same data_type).
first_dataset = next(lazily_load_dataset("train", opt))
data_type = first_dataset.data_type
# Load fields generated from preprocess phase.
fields = _load_fields(first_dataset, data_type, opt, checkpoint)
# Report src/tgt features.
src_features, tgt_features = _collect_report_features(fields)
for j, feat in enumerate(src_features):
logger.info(' * src feature %d size = %d'
% (j, len(fields[feat].vocab)))
for j, feat in enumerate(tgt_features):
logger.info(' * tgt feature %d size = %d'
% (j, len(fields[feat].vocab)))
# Build model.
model = build_model(model_opt, opt, fields, checkpoint, additional_device0)
# model = build_model(model_opt, opt, fields, checkpoint, "cpu")
return model
def bulid_model_D(opt, src_vocab_size, tgt_vocab_size):
save_path = opt.save_model
print ("save_path", save_path)
try:
os.makedirs(save_path)
except OSError:
pass
# if opt.train_from != '':
# print("=> loading checkpoint '{}'".format(opt.train_from))
# checkpoint = torch.load(opt.train_from)
# model_path = opt.train_from
if opt.model_path_D != '' :
print("=> loading checkpoint '{}'".format(opt.model_path_D))
checkpoint_D = torch.load(opt.model_path_D)
else:
model_path_D = save_path
# if opt.model_path_G != '':
# print("=> loading checkpoint '{}'".format(opt.model_path_G))
# checkpoint_G = torch.load(opt.model_path_G)
lr = opt.LM_lr
print("rnn size", opt.rnn_size)
src_netE_att = _netE_att(opt.rnn_size, src_vocab_size, opt.dropout)
src_netW = _netW(src_vocab_size, opt.rnn_size, opt.dropout, name="src", cuda=opt.cuda)
print("src_netW", src_vocab_size, src_netW.word_embed)
tgt_netW = _netW(tgt_vocab_size, opt.rnn_size, opt.dropout, name="tgt", cuda=opt.cuda)
print("tgt_netW", tgt_vocab_size, tgt_netW.word_embed)
tgt_netE_att = _netE_att(opt.rnn_size, tgt_vocab_size, opt.dropout, is_target=True)
critD = model.nPairLoss(opt.rnn_size, opt.margin)
if opt.model_path_D != '' : # load the pre-trained model.
src_netW.load_state_dict(checkpoint_D['src_netW'])
tgt_netW.load_state_dict(checkpoint_D['tgt_netW'])
src_netE_att.load_state_dict(checkpoint_D['src_netE_att'])
tgt_netE_att.load_state_dict(checkpoint_D['tgt_netE_att'])
lr = checkpoint_D['lr']
if opt.cuda:
tgt_netW.cuda()
src_netW.cuda()
src_netE_att.cuda()
tgt_netE_att.cuda()
critD.cuda()
print('init Generative model...')
sampler = model.gumbel_sampler()
critG = model.G_loss(opt.rnn_size)
critLM = model.LMCriterion()
BLEU_score = model.BLEU_score()
if opt.cuda: # ship to cuda, if has GPU
sampler.cuda()
critG.cuda()
critLM.cuda()
BLEU_score.cuda()
print("load netD successfully")
return tgt_netW, src_netW, src_netE_att, tgt_netE_att, critD, lr, sampler, critG, critLM, BLEU_score
# torch.cuda.set_device(0)
####################################################################################
# training model
####################################################################################
netG = bulid_nmt_model(opt)
print("load nmt model successfully")
# if opt.cuda:
# netG.cuda()
# netG.to(additional_device0)
# print("netG.device", netG.device)
# exit()
tgt_netW, src_netW, src_netE_att, tgt_netE_att, critD, lr, sampler, critG, critLM, BLEU_score = bulid_model_D(opt, src_vocab_size, tgt_vocab_size)
def train(epoch):
tgt_netW.train(), src_netW.train(), src_netE_att.train(), tgt_netE_att.train(), netG.train()
save_path = opt.save_model
# alpha.train()
if opt.cuda:
tgt_netW.cuda()
src_netW.cuda()
src_netE_att.cuda()
tgt_netE_att.cuda()
netG.cuda()
fake_len = torch.LongTensor(opt.batch_size)
fake_len = fake_len.cuda()
n_neg = opt.negative_sample
data_iter = iter(dataloader)
err_d = 0
err_g = 0
err_lm = 0
average_loss = 0
count = 0
i = 0
loss_store = []
t = time.time()
while i < len(dataloader)-1:
t1 = time.time()
data = data_iter.next()
# image, history, question, answer, answerT, answerLen, answerIdx, questionL, opt_answerT, opt_answerLen, opt_answerIdx = data
questionLen, question, answer, answerT, answerLen, answerIdx, questionL, _, opt_answerT, opt_answerLen, opt_answerIdx, answer_ids = data
# print("question", question,question.size())
# print("questionL", questionL,questionL.size())
# print("questionLen", questionLen, questionLen.size())
# exit()
batch_size = question.size(0)
# image = image.view(-1, 512)
# img_input.data.resize_(image.size()).copy_(image)
err_d_tmp = 0.
err_g_tmp = 0.
err_lm_tmp = 0.
err_g_fake_tmp = 0.
err_d_fake_tmp = 0.
ques = question[:,:].t()
ques_g = questionL[:,:].t()
ans = answer[:,:].t()
if opt.debug == True:
ques_words = [src_itos[int(w)] for w in ques_g]
answer_words = [tgt_itos[int(w)] for w in answer[0]]
print("train_all.py train() ques_g.size()", ques_g.size())
print("train_all.py train() answer.size()", answer.size())
print("train_all.py train() ques_g", ques_g, len(ques_g))
print("train_all.py train() answer", answer, len(answer))
print("train_all.py train() ques_words", ques_words, len(ques_words))
print("train_all.py train() answer_words", answer_words, len(answer_words))
# print("train_all.py ans", ans.size())
tans = answerT[:,:].t()
wrong_ans = opt_answerT[:,:].clone().view(-1, tgt_length).t()
real_len = answerLen[:].long()
wrong_len = opt_answerLen[:,:].clone().view(-1)
ques_input.data.resize_(ques.size()).copy_(ques)
src_input_g.data.resize_(ques.size()).copy_(ques_g)
# print("train_all.py ques_input",ques_input, ques_input.size(), ques_input.device)
ans_input.data.resize_(ans.size()).copy_(ans)
ans_target.data.resize_(tans.size()).copy_(tans)
wrong_ans_input.data.resize_(wrong_ans.size()).copy_(wrong_ans)
batch_sample_idx.data.resize_(batch_size, opt.neg_batch_sample).zero_()
sample_batch_neg(answerIdx[:], opt_answerIdx[:,:], batch_sample_idx, opt.neg_batch_sample)
src = src_input_g.view(-1, batch_size, 1).clone().to(additional_device0)
tgt = ans_input.view(-1, batch_size, 1).clone().to(additional_device0)
src_length = questionLen.view(batch_size)
# if opt.update_G:
fake_onehot = []
fake_idx = []
noise_input.data.resize_(tgt_length, batch_size, tgt_vocab_size)
noise_input.data.uniform_(0,1)
# print("train_all.py train() noise_input", noise_input.size())
ans_sample = ans_input[0]
enc_final, memory_bank = netG.encoder(src, src_length)
# dec_states = netG.decoder.init_decoder_state(src, memory_bank, enc_states)
dec_state = None
dec_state = netG.decoder.init_decoder_state(src, memory_bank, enc_final)
memory_bank = tile(memory_bank, 1, dim=1)
memory_lengths = tile(src_length, 1)
alive_seq = torch.full(
[opt.batch_size, 1],
start_token,
dtype=torch.long,
device=additional_device0)
for step in range(tgt_length):
decoder_input = alive_seq[:, -1].view(1, -1, 1)
dec_out, dec_state, _ = netG.decoder(decoder_input,
memory_bank,
dec_state,
memory_lengths=memory_lengths,
step=step)
logprob = netG.generator.forward(dec_out.squeeze(0))
one_hot, idx = sampler(logprob, noise_input[step].to(additional_device0), opt.gumble_weight)
fake_onehot.append(one_hot.view(1, -1, tgt_vocab_size))
fake_idx.append(idx)
if step+1 < tgt_length:
ans_sample = idx
alive_seq = torch.cat(
(alive_seq, idx.view(-1,1)), -1)
fake_onehot = torch.cat(fake_onehot, 0)
fake_idx = torch.cat(fake_idx,0)
fake_len = fake_len.resize_(batch_size).fill_(tgt_length-1).clone()
for di in range(tgt_length-1, 0, -1):
fake_len.masked_fill_(fake_idx.data[di].eq(tgt_vocab_size), di)
fake_mask.data.resize_(fake_idx.size()).fill_(1)
for b in range(batch_size):
fake_mask.data[:fake_len[b]+1, b] = 0
fake_idx.masked_fill_(fake_mask.clone(), 0)
fake_onehot = fake_onehot.view(-1, tgt_vocab_size)
ques_emb_d = src_netW(ques_input, format = 'index')
featD, _ = src_netE_att(ques_emb_d, ques_input)
ans_real_emb = tgt_netW(ans_target, format='index')
ans_fake_emb = tgt_netW(fake_onehot.to('cuda'), format='onehot')
ans_fake_emb = ans_fake_emb.view(tgt_length, -1, opt.rnn_size)
fake_feat, _ = tgt_netE_att(ans_fake_emb.cuda(), fake_idx.cuda())
real_feat, _ = tgt_netE_att(ans_real_emb.cuda(), ans_target)
############################## update_D ###########################################
src_netW.zero_grad()
tgt_netW.zero_grad()
src_netE_att.zero_grad()
tgt_netE_att.zero_grad()
ans_wrong_emb = tgt_netW(wrong_ans_input, format='index')
tgt_wrong_feat, _weight_ = tgt_netE_att(ans_wrong_emb, wrong_ans_input)
batch_wrong_feat = tgt_wrong_feat.index_select(0, batch_sample_idx.view(-1))
tgt_wrong_feat = tgt_wrong_feat.view(batch_size, -1, opt.rnn_size)
batch_wrong_feat = batch_wrong_feat.view(batch_size, -1, opt.rnn_size)
# print("featD",featD.size())
# print("fake_feat",fake_feat.size())
# batch_wrong_feat = fake_feat.index_select(0, batch_sample_idx.view(-1))
# fake_feat = fake_feat.view(batch_size, -1, opt.rnn_size)
# batch_wrong_feat = batch_wrong_feat.view(batch_size, -1, opt.rnn_size)
nPairLoss, d_fake = critD(featD, real_feat, tgt_wrong_feat, batch_wrong_feat, fake_feat)
# print("train_gan.py d_fake", d_fake, float(d_fake))
nPairLoss.backward(retain_graph=True)
optimizerD.step()
err_d += nPairLoss.data.item()
err_d_tmp += nPairLoss.data.item()
err_d_fake_tmp += d_fake.data.item()
############################## update_D ###########################################
############################## update_G #############################################
d_g_loss, g_fake = critG(featD, real_feat, fake_feat)
bleu_score = BLEU_score(ans_target, fake_idx)
netG.zero_grad()
d_g_loss.backward()
optimizerG.step()
err_g += d_g_loss.item()
err_g_tmp += d_g_loss.item()
err_g_fake_tmp += g_fake
############################## update_G #############################################
############################## update_LM ###########################################
outputs, _, _ = netG(src, tgt, src_length, None)
logprob = netG.generator(outputs.view(-1, outputs.size(2)))
lm_loss = critLM(logprob, tgt[1:, :, :].view(-1, 1))
lm_loss = lm_loss / float(torch.sum(1-ans_target[1:, :].data.eq(1)))
lm_loss = lm_loss*bleu_score
netG.zero_grad()
lm_loss.backward()
optimizerLM.step()
err_lm += lm_loss.item()
err_lm_tmp += lm_loss.item()
############################## update_LM ###########################################
count += 1
i += 1
loss_store.append({'iter':i, 'err_lm':err_lm_tmp/10, 'err_g':err_g_tmp/10, 'g_fake':err_g_fake_tmp/10, 'err_d':err_d_tmp})
if i % opt.report_every == 0:
print ('Epoch:%d %d/%d, err_lm %4f, err_g %4f, g_fake %4f, err_d %4f, d_fake %4f, Time: %.3f' % (epoch, i, len(dataloader), err_lm_tmp/10, err_g_tmp/10, err_g_fake_tmp/10, err_d_tmp/10, err_d_fake_tmp/10, time.time()-t))
t = time.time()
if i % opt.save_checkpoint_steps == 0:
print("Saving ... ")
torch.save({'epoch': epoch,
'opt': opt,
'src_netW': src_netW.state_dict(),
'tgt_netW': tgt_netW.state_dict(),
'tgt_netE_att': tgt_netE_att.state_dict(),
'src_netE_att': src_netE_att.state_dict(),
'netG': netG.state_dict(),
'optimizerD': optimizerD,
'optimizerG': optimizerG,
'optimizerLM': optimizerLM,
},
'%s/epoch_%d_%d.pth' % (save_path, epoch, i))
# if i >= 20:break
err_g = err_g / count
err_lm = err_lm / count
err_d = err_d / count
return err_lm, err_g, err_d, loss_store
####################################################################################
# Main
####################################################################################
alpha = torch.tensor(0.5)
ques_input = torch.LongTensor(src_length, opt.batch_size)
src_input_g = torch.LongTensor(src_length, opt.batch_size)
ans_input = torch.LongTensor(tgt_length, opt.batch_size)
ans_target = torch.LongTensor(tgt_length, opt.batch_size)
wrong_ans_input = torch.LongTensor(tgt_length, opt.batch_size)
sample_ans_input = torch.LongTensor(1, opt.batch_size)
fake_len = torch.LongTensor(opt.batch_size)
fake_diff_mask = torch.ByteTensor(opt.batch_size)
fake_mask = torch.ByteTensor(opt.batch_size)
# answer len
batch_sample_idx = torch.LongTensor(opt.batch_size)
# noise
noise_input = torch.FloatTensor(opt.batch_size)
if opt.cuda:
ques_input = ques_input.cuda()
src_input_g = src_input_g.cuda()
ans_input, ans_target = ans_input.cuda(), ans_target.cuda()
wrong_ans_input = wrong_ans_input.cuda()
sample_ans_input = sample_ans_input.cuda()
fake_len = fake_len.cuda()
noise_input = noise_input.cuda()
batch_sample_idx = batch_sample_idx.cuda()
fake_diff_mask = fake_diff_mask.cuda()
fake_mask = fake_mask.cuda()
optimizerD = optim.Adam([{'params': src_netW.parameters()},
{'params': tgt_netW.parameters()},
{'params': src_netE_att.parameters()},
{'params': tgt_netE_att.parameters()}], lr=opt.D_lr, betas=(opt.beta1, 0.999))
optimizerG = optim.Adam([{'params': netG.parameters()}], lr=opt.G_lr, betas=(opt.beta1, 0.999))
optimizerLM = optim.Adam([{'params': netG.parameters()}], lr=opt.LM_lr, betas=(opt.beta1, 0.999))
history = []
train_his = {}
for epoch in range(opt.start_epoch+1, opt.niter):
# for epoch in range(opt.start_epoch+1, 2):
t = time.time()
train_loss_lm, train_loss_g, train_loss_d, loss_store = train(epoch)
print ('Epoch: %d LM loss %4f, Generator loss %4f, Discriminator loss %4f, Time: %3f' % (epoch, train_loss_lm, train_loss_g, train_loss_d, time.time()-t))
train_his = {'lossLM': train_loss_lm, 'loss_G':train_loss_g, 'loss_D':train_loss_d, 'loss_store':loss_store}
history.append({'epoch':epoch, 'train': train_his})
# saving the model.
save_path = opt.save_model
torch.save({'epoch': epoch,
'opt': opt,
'src_netW': src_netW.state_dict(),
'tgt_netW': tgt_netW.state_dict(),
'tgt_netE_att': tgt_netE_att.state_dict(),
'src_netE_att': src_netE_att.state_dict(),
'netG': netG.state_dict(),
'optimizerD': optimizerD,
'optimizerG': optimizerG,
'optimizerLM': optimizerLM,
},
'%s/epoch_%d.pth' % (save_path, epoch))
json.dump(history, open('%s/log.json' %(save_path), 'w'))