-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_autoencoder.py
397 lines (331 loc) · 12.5 KB
/
evaluate_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import sys
import os
import gc
import pickle
import datetime
import copy
import time
import numpy as np
import tensorflow as tf
sys.path.append(os.path.abspath("../"))
sys.path.append(os.path.abspath("./"))
import helpers.lran_helpers
from helpers.data_generator import process_data, AutoEncoderDataGenerator
from helpers.normalization import normalize, denormalize, renormalize
from helpers.hyperparam_helpers import slurm_script
from helpers import custom_objects
##########
# set tf session
##########
config = tf.compat.v1.ConfigProto(
intra_op_parallelism_threads=16,
inter_op_parallelism_threads=16,
allow_soft_placement=True,
device_count={"CPU": len(os.sched_getaffinity(0)), "GPU": 0},
)
session = tf.compat.v1.Session(config=config)
##########
# metrics
##########
def sigma(inp, true, prediction):
eps = prediction - true
num = np.linalg.norm(eps, axis=-1)
denom = np.linalg.norm(true, axis=-1)
included_inds = np.where(~np.isclose(denom, 0))[0]
return num[included_inds] / denom[included_inds]
def mean_absolute_error(residual):
return np.mean(np.linalg.norm(residual, ord=1, axis=-1))
def median_absolute_error(residual):
return np.median(np.linalg.norm(residual, ord=1, axis=-1))
def percentile25_absolute_error(residual):
return np.percentile(np.linalg.norm(residual, ord=1, axis=-1), 25)
def percentile75_absolute_error(residual):
return np.percentile(np.linalg.norm(residual, ord=1, axis=-1), 75)
def percentile99_absolute_error(residual):
return np.percentile(np.linalg.norm(residual, ord=1, axis=-1), 99)
def max_absolute_error(residual):
return np.max(np.linalg.norm(residual, ord=1, axis=-1))
def root_mean_squared_error(residual):
return np.mean(np.linalg.norm(residual, ord=2, axis=-1))
def root_median_squared_error(residual):
return np.median(np.linalg.norm(residual, ord=2, axis=-1))
def root_percentile25_squared_error(residual):
return np.percentile(np.linalg.norm(residual, ord=2, axis=-1), 25)
def root_percentile75_squared_error(residual):
return np.percentile(np.linalg.norm(residual, ord=2, axis=-1), 75)
def root_percentile99_squared_error(residual):
return np.percentile(np.linalg.norm(residual, ord=2, axis=-1), 99)
def root_max_squared_error(residual):
return np.max(np.linalg.norm(residual, ord=2, axis=-1))
metrics = {
"mean_absolute_error": mean_absolute_error,
"median_absolute_error": median_absolute_error,
"percentile25_absolute_error": percentile25_absolute_error,
"percentile75_absolute_error": percentile75_absolute_error,
"percentile99_absolute_error": percentile99_absolute_error,
"max_absolute_error": max_absolute_error,
"root_mean_squared_error": root_mean_squared_error,
"root_median_squared_error": root_median_squared_error,
"root_percentile25_squared_error": root_percentile25_squared_error,
"root_percentile75_squared_error": root_percentile75_squared_error,
"root_percentile99_squared_error": root_percentile99_squared_error,
"root_max_squared_error": root_max_squared_error,
# "sigma": sigma,
}
def evaluate(file_path):
"""Evaluate model on consistent set of data
Parameters
----------
file_path : str
path to pkl file of scenario
"""
T0 = time.time()
print("loading scenario: " + file_path)
with open(file_path, "rb") as f:
scenario = pickle.load(f, encoding="latin1")
T1 = time.time()
print("took {}s".format(T1 - T0))
fmt = scenario["model_path"][-2:]
model_path = file_path[:-11] + "_model." + fmt
if os.path.exists(model_path):
print("loading model: " + model_path.split("/")[-1])
model = tf.keras.models.load_model(
model_path,
compile=False,
custom_objects=custom_objects if (fmt == "h5") else None,
)
print("took {}s".format(time.time() - T1))
else:
print("no model for path:", model_path)
return
T1 = time.time()
print("loading data")
traindata, valdata, normalization_dict = process_data(
scenario["raw_data_path"],
scenario["sig_names"],
scenario["normalization_method"],
scenario["window_length"],
scenario["window_overlap"],
0, # scenario['lookback'],
scenario["lookahead"], # always evaluate 1s into future
scenario["sample_step"],
scenario["uniform_normalization"],
1, # scenario['train_frac'],
0, # scenario['val_frac'],
scenario["nshots"],
2, # verbose,
scenario["flattop_only"],
pruning_functions=scenario["pruning_functions"],
invert_q=scenario["invert_q"],
excluded_shots=scenario["excluded_shots"],
val_idx=0,
)
del traindata
gc.collect()
print("Data processing took {}s".format(time.time() - T1))
T1 = time.time()
val_generator = AutoEncoderDataGenerator(
valdata,
scenario["batch_size"],
scenario["profile_names"],
scenario["actuator_names"],
scenario["scalar_names"],
scenario["lookahead"], # always evaluate 1s into future
scenario["profile_downsample"],
scenario["state_latent_dim"],
1, # scenario["discount_factor"],
1, # scenario["x_weight"],
1, # scenario["u_weight"],
False,
sample_weights=None,
)
res = model.predict(val_generator, verbose=0, workers=4, use_multiprocessing=True)
if len(res) == 3:
ures, xres, lres = res
elif len(res) == 8:
ures, _, xres, _, lres, _, _, _ = res
else:
raise ValueError("unknown model outputs")
print("Computing residuals took {}s".format(time.time() - T1))
T1 = time.time()
x_residuals = {
sig: xres[
..., i * scenario["profile_length"] : (i + 1) * scenario["profile_length"]
]
for i, sig in enumerate(scenario["profile_names"])
}
evaluation_metrics = {}
for metric_name, metric in metrics.items():
s = 0
key = "linear_sys_" + metric_name
val = metric(lres)
evaluation_metrics[key] = val
for sig in scenario["profile_names"]:
key = sig + "_" + metric_name
val = metric(x_residuals[sig])
s += val / len(scenario["profile_names"])
evaluation_metrics[key] = val
evaluation_metrics["coder_" + metric_name] = s
print("Computing metrics took {}s".format(time.time() - T1))
T1 = time.time()
# denormalize data for the rest of it
valdata = helpers.normalization.denormalize(valdata, normalization_dict)
encoder_data = helpers.lran_helpers.compute_encoder_data(
model, scenario, valdata, verbose=0
)
del valdata
gc.collect()
evaluation_metrics["p25_sigma"] = {
key: np.nanpercentile(val, 25, axis=0)
for key, val in encoder_data["sigma"].items()
}
evaluation_metrics["p50_sigma"] = {
key: np.nanpercentile(val, 50, axis=0)
for key, val in encoder_data["sigma"].items()
}
evaluation_metrics["p75_sigma"] = {
key: np.nanpercentile(val, 75, axis=0)
for key, val in encoder_data["sigma"].items()
}
evaluation_metrics["p99_sigma"] = {
key: np.nanpercentile(val, 99, axis=0)
for key, val in encoder_data["sigma"].items()
}
print("Computing encoder data took {}s".format(time.time() - T1))
T1 = time.time()
encoder_norm_data = helpers.lran_helpers.compute_norm_data(
encoder_data["x0"], encoder_data["z0"]
)
decoder_norm_data = helpers.lran_helpers.compute_norm_data(
encoder_data["xp0"], encoder_data["zp0"]
)
print("Computing norm data took {}s".format(time.time() - T1))
T1 = time.time()
# store operator norm data
evaluation_metrics["p25_encoder_operator_norm"] = np.nanpercentile(
encoder_norm_data["operator_norm"], 25
)
evaluation_metrics["p50_encoder_operator_norm"] = np.nanpercentile(
encoder_norm_data["operator_norm"], 50
)
evaluation_metrics["p75_encoder_operator_norm"] = np.nanpercentile(
encoder_norm_data["operator_norm"], 75
)
evaluation_metrics["p99_encoder_operator_norm"] = np.nanpercentile(
encoder_norm_data["operator_norm"], 99
)
evaluation_metrics["p25_decoder_operator_norm"] = np.nanpercentile(
decoder_norm_data["operator_norm"], 25
)
evaluation_metrics["p50_decoder_operator_norm"] = np.nanpercentile(
decoder_norm_data["operator_norm"], 50
)
evaluation_metrics["p75_decoder_operator_norm"] = np.nanpercentile(
decoder_norm_data["operator_norm"], 75
)
evaluation_metrics["p99_decoder_operator_norm"] = np.nanpercentile(
decoder_norm_data["operator_norm"], 99
)
evaluation_metrics["p25_encoder_lipschitz_constant"] = np.nanpercentile(
encoder_norm_data["lipschitz_constant"], 25
)
evaluation_metrics["p50_encoder_lipschitz_constant"] = np.nanpercentile(
encoder_norm_data["lipschitz_constant"], 50
)
evaluation_metrics["p75_encoder_lipschitz_constant"] = np.nanpercentile(
encoder_norm_data["lipschitz_constant"], 75
)
evaluation_metrics["p99_encoder_lipschitz_constant"] = np.nanpercentile(
encoder_norm_data["lipschitz_constant"], 99
)
evaluation_metrics["p25_decoder_lipschitz_constant"] = np.nanpercentile(
decoder_norm_data["lipschitz_constant"], 25
)
evaluation_metrics["p50_decoder_lipschitz_constant"] = np.nanpercentile(
decoder_norm_data["lipschitz_constant"], 50
)
evaluation_metrics["p75_decoder_lipschitz_constant"] = np.nanpercentile(
decoder_norm_data["lipschitz_constant"], 75
)
evaluation_metrics["p99_decoder_lipschitz_constant"] = np.nanpercentile(
decoder_norm_data["lipschitz_constant"], 99
)
# time dependent residuals in z, x
for metric_name, metric in metrics.items():
evaluation_metrics["dzrel_" + metric_name] = np.array(
[
metric(encoder_data["dz"][:, i, :])
/ np.nanmedian(encoder_norm_data["z0_norm"])
for i in range(encoder_data["dz"].shape[1])
]
)
evaluation_metrics["dz_" + metric_name] = np.array(
[
metric(encoder_data["dz"][:, i, :])
for i in range(encoder_data["dz"].shape[1])
]
)
evaluation_metrics["dxrel_" + metric_name] = np.array(
[
metric(encoder_data["dx"][:, i, :])
/ np.nanmedian(encoder_norm_data["x0_norm"])
for i in range(encoder_data["dx"].shape[1])
]
)
evaluation_metrics["dx_" + metric_name] = np.array(
[
metric(encoder_data["dx"][:, i, :])
for i in range(encoder_data["dx"].shape[1])
]
)
scenario["encoder_norm_data"] = encoder_norm_data
scenario["decoder_norm_data"] = decoder_norm_data
scenario["evaluation_metrics"] = evaluation_metrics
A, B = helpers.lran_helpers.get_AB(model)
scenario["A_matrix"] = A
scenario["B_matrix"] = B
ctrb, rank, cols = helpers.qpmpc.compute_ctrb(A, B)
scenario["ctrb_rank"] = rank
scenario["ctrb"] = ctrb
for key, val in evaluation_metrics.items():
print(key)
print(val)
T1 = time.time()
with open(file_path, "wb+") as f:
pickle.dump(copy.deepcopy(scenario), f)
print("Repickling took {}s".format(time.time() - T1))
print("TOTAL took {}s".format(time.time() - T0))
gc.collect()
if __name__ == "__main__":
args = sys.argv[1:]
nargs = len(args)
if nargs < 11:
for arg in args:
evaluate(os.path.abspath(arg))
gc.collect()
else:
for i in range(0, nargs, 10):
job = "eval_" + args[i].split("/")[-1]
base_path = "/".join(os.path.abspath(args[i]).split("/")[:-1]) + "/"
file_path = base_path + job + ".slurm"
paths = [os.path.abspath(arg) for arg in args[i : i + 10]]
command = "module purge \n"
command += "module load anaconda \n"
command += "conda activate tf2-gpu \n"
command += "\n".join(
[
"python ~/plasma-profile-predictor/evaluate_autoencoder.py " + path
for path in paths
]
)
slurm_script(
file_path=file_path,
command=command,
job_name=job,
ncpu=32,
ngpu=0,
mem=128,
time=720,
user="",
)
print("Jobs submitted, exiting")