-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathian_train.py
360 lines (332 loc) · 18.7 KB
/
ian_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import torch
from torch.nn.utils.rnn import pack_padded_sequence, pad_sequence
from customDatasetMakers import preprocess_data, ian_dataset, get_state_indices_dic
from customModels import IanRNN, IanMLP, HiroLRAN, HiroLRAN_nondiag, HiroLRANDiag, HiroLRANInverse
from train_helpers import make_bucket, \
get_state_mask, get_sample_time_state_mask, masked_loss, get_controllability, get_controllability_and_condition_number
from dataSettings import nx
import configparser
import os
import sys
import shutil
import time
models={'IanRNN': IanRNN, 'IanMLP': IanMLP, 'HiroLRAN': HiroLRAN, 'HiroLRAN_nondiag': HiroLRAN_nondiag,'HiroLRANDiag': HiroLRANDiag, 'HiroLRANInverse': HiroLRANInverse}
if (len(sys.argv)-1) > 0:
config_filename=sys.argv[1]
else:
config_filename='model.cfg'
config=configparser.ConfigParser()
config.read(config_filename)
preprocessed_data_filenamebase=config['preprocess']['preprocessed_data_filenamebase']
use_fancy_normalization=config['preprocess'].getboolean('use_fancy_normalization',False)
model_type=config['model'].get('model_type','IanRNN')
bucket_size=config['optimization'].getint('bucket_size')
nwarmup=config['optimization'].getint('nwarmup',0)
n_epochs=config['optimization'].getint('n_epochs')
lr=config['optimization'].getfloat('lr')
lr_gamma=config['optimization'].getfloat('lr_gamma')
lr_stop_epoch=config['optimization'].getint('lr_stop_epoch')
early_saving=config['optimization'].getboolean('early_saving')
l1_lambda=config['optimization'].getfloat('l1_lambda')
l2_lambda=config['optimization'].getfloat('l2_lambda')
var_lambda=config['optimization'].getfloat('var_lambda')
pcs_normalize=config['optimization'].getboolean('pcs_normalize',False)
fast_training=config['optimization'].getboolean('fast_training',False)
inverting_weight=config['optimization'].getfloat('inverting_weight')
future_inverting_weight=config['optimization'].getfloat('future_inverting_weight')
include_latent_invertibility=config['optimization'].getboolean('include_latent_invertibility',False)
include_condition_number=config['optimization'].getboolean('include_condition_number',False)
latent_loss_weight=config['optimization'].getfloat('latent_loss_weight')
controllability_weight=config['optimization'].getfloat('controllability_weight')
profiles=config['inputs']['profiles'].split()
actuators=config['inputs']['actuators'].split()
parameters=config['inputs'].get('parameters','').split()
calculations=config['inputs'].get('calculations','').split()
save_epochs=config['optimization'].get('save_epochs','').split()
save_epochs=[int(elem) for elem in save_epochs]
autoregression_num_steps=config['optimization'].getfloat('autoregression_num_steps',1)
autoregression_start_epoch=config['optimization'].getint('autoregression_start_epoch',int(n_epochs/4))
autoregression_end_epoch=config['optimization'].getint('autoregression_end_epoch',int(3*n_epochs/4))
if model_type == "HiroLRAN_nondiag":
latent_dim = config['HiroLRAN_nondiag'].getint('latent_dim')
if autoregression_num_steps<1:
autoregression_num_steps=1
# temporary to maintain back-compatibility
if config.has_section('tuning'):
tune_model=config['tuning'].getboolean('tune_model',False)
if tune_model:
if 'model_to_tune_filename_base' not in config['tuning']:
raise Exception("config['tuning']['tune_model'] set to true but no starting file specified in config['tuning']['model_to_tune_filename_base']")
model_to_tune_filename_base=config['tuning']['model_to_tune_filename_base']
frozen_layers=config['tuning'].get('frozen_layers','').split()
resume_training=config['tuning'].getboolean('resume_training',False)
masked_outputs=config['tuning'].get('masked_outputs','').split()
rho_bdry_index=config['tuning'].getint('rho_bdry_index',None)
else:
tune_model=False
masked_outputs=[]
rho_bdry_index=None
# epoch to start on, should be 0 generally but can increase w/ tune_model to restart a model that stopped halfway
# at the moment, by default tune_model will start the epochs where the previous left off
start_epoch=0
model_hyperparams={key: int(val) for key,val in dict(config[model_type]).items()}
state_length=len(profiles)*nx+len(parameters)
actuator_length=len(actuators)
calculation_length=len(calculations)*33
model=models[model_type](input_dim=state_length+calculation_length+2*actuator_length, output_dim=state_length,
**model_hyperparams)
# dump to same location as the config filename, with .tar instead of .cfg
output_filename=os.path.join(config['model']['output_dir'],f"{config['model']['output_filename_base']}.tar")
epoch_output_filename = lambda epoch : os.path.join(config['model']['output_dir'],f"{config['model']['output_filename_base']}EPOCH{epoch}.tar")
# you probably want to use the same config file you had used for the original model, though you might swap
# out signals like for data+sim
if tune_model:
untuned_output_filename=os.path.join(config['model']['output_dir'],f"{model_to_tune_filename_base}.tar")
# note that if you run on a different computer, you might need map_location=torch.device('cpu') for loading
saved_state=torch.load(untuned_output_filename)
model.load_state_dict(saved_state['model_state_dict'])
if resume_training:
start_epoch=saved_state['epoch']
print(f'Starting from model state stored in {untuned_output_filename}, from epoch {start_epoch}; saving new model to {output_filename}')
for name, child in model.named_children():
if name in frozen_layers:
print(f"Freezing '{name}' layer for tuning procedure")
for param in child.parameters():
param.requires_grad = False
min_sample_length=max(2*nwarmup,40)
train_filename=preprocessed_data_filenamebase+'train.pkl'
print(f'Organizing train data from {train_filename}')
start_time=time.time()
x_train, y_train, shots, times = ian_dataset(train_filename,
profiles,parameters,calculations,actuators,
sort_by_size=True, min_sample_length=min_sample_length,
use_fancy_normalization=use_fancy_normalization, pcs_normalize=pcs_normalize)
# shrink training set to 1/10th of the size for faster training
if fast_training:
x_train=x_train[:int(len(x_train)/10)]
y_train=y_train[:int(len(y_train)/10)]
shots=shots[:int(len(shots)/10)]
times=times[:int(len(times)/10)]
print(f'...fast training, using {len(x_train)} samples')
print(f'...took {(time.time()-start_time):0.2f}s')
val_filename=preprocessed_data_filenamebase+'val.pkl'
print(f'Organizing validation data from {val_filename}')
start_time=time.time()
x_val, y_val, shots, times = ian_dataset(val_filename,
profiles,parameters,calculations,actuators,
sort_by_size=True, min_sample_length=min_sample_length,
use_fancy_normalization=use_fancy_normalization, pcs_normalize=pcs_normalize)
print(f'...took {(time.time()-start_time):0.2f}s')
# I divide out by myself since different sequences/batches have different sizes
# see train_helpers.py
loss_fn=torch.nn.MSELoss(reduction='sum')
state_mask=get_state_mask(profiles, parameters,
masked_outputs, rho_bdry_index)
print('Training...')
if torch.cuda.is_available():
device='cuda'
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
print(f"Using {torch.cuda.device_count()} GPU(s)")
else:
device = 'cpu'
print("Using CPU")
model.to(device)
param_size = 0
for param in model.parameters():
param_size += param.nelement() * param.element_size()
buffer_size = 0
for buffer in model.buffers():
buffer_size += buffer.nelement() * buffer.element_size()
size_all_mb = (param_size + buffer_size) / 1024**2
print('model size: {:.3f}MB'.format(size_all_mb))
start_time=time.time()
prev_time=start_time
train_x_buckets = make_bucket(x_train, bucket_size)
train_y_buckets = make_bucket(y_train, bucket_size)
train_length_buckets = [[len(arr) for arr in bucket] for bucket in train_x_buckets]
val_x_buckets = make_bucket(x_val, bucket_size)
val_y_buckets = make_bucket(y_val, bucket_size)
val_length_buckets = [[len(arr) for arr in bucket] for bucket in val_x_buckets]
# apply filter to handle case of freezing layers (happens above) for model tuning
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=lr, weight_decay=1e-5)
#scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10,30,50,70], gamma=lr_gamma, verbose=True)
#scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, lr_gamma, last_epoch=lr_stop_epoch)
if tune_model and resume_training:
#print(optimizer.state_dict()['param_groups'])
#print(saved_state['optimizer_state_dict']['param_groups'])
#optimizer.load_state_dict(saved_state['optimizer_state_dict'])
avg_train_losses=saved_state['train_losses']
avg_val_losses=saved_state['val_losses']
else:
avg_train_losses=[]
avg_controllability_losses=[]
avg_inverting_losses=[]
avg_future_inverting_losses=[]
avg_val_losses=[]
for epoch in range(start_epoch, n_epochs):
if autoregression_num_steps<=1 or epoch<autoregression_start_epoch:
reset_probability=1
else:
if epoch>=autoregression_end_epoch:
avg_steps=autoregression_num_steps
else:
y2=float(autoregression_num_steps)
y1=float(1)
x2=float(autoregression_end_epoch)
x1=float(autoregression_start_epoch)
avg_steps=(y2-y1)/(x2-x1) * (epoch-x1) + y1
reset_probability=1./avg_steps
print(f'Autoregression on, average timestep {avg_steps:0.1f}')
model.train()
train_losses=[]
controllability_losses=[]
inverting_losses=[]
future_inverting_losses=[]
for which_bucket in torch.randperm(len(train_x_buckets)):
random_order=torch.randperm(len(train_x_buckets[which_bucket]))
x_bucket=[train_x_buckets[which_bucket][i] for i in random_order]
y_bucket=[train_y_buckets[which_bucket][i] for i in random_order]
length_bucket=[train_length_buckets[which_bucket][i] for i in random_order]
padded_x=pad_sequence(x_bucket, batch_first=True)
padded_y=pad_sequence(y_bucket, batch_first=True)
padded_x=padded_x.to(device)
padded_y=padded_y.to(device)
optimizer.zero_grad()
model_output=model(padded_x,reset_probability=reset_probability,nwarmup=nwarmup)
model_output=model_output.to(device)
mask=get_sample_time_state_mask(state_mask, model_output.size(), length_bucket, nwarmup)
mask=mask.to(device)
train_loss=masked_loss(loss_fn,
model_output, padded_y,
mask)
# L1 regularization
if l1_lambda!=0:
l1_reg = torch.tensor(0.0, device=device)
for name, param in model.named_parameters():
if 'B.weight' in name or 'A.weight' in name:
l1_reg += torch.norm(param, 1)
train_loss += l1_lambda*l1_reg # lambda is the hyperparameter defined in cfg
if (model_type=='HiroLRAN' or model_type=='HiroLRAN_nondiag' and inverting_weight!=0):
# get loss from inverting the model
padded_x_hat = model.encode_decode(padded_x)
inverting_loss = masked_loss(loss_fn, padded_x[:,:,:state_length], padded_x_hat, mask)
train_loss += inverting_weight * inverting_loss
inverting_losses.append((inverting_weight*inverting_loss).item())
# get loss from inverting the model across 10 timesteps
if (model_type=='HiroLRAN' or model_type=='HiroLRAN_nondiag' and future_inverting_weight!=0):
if padded_x.shape[-2]>20:
future_inverting_loss_list=[]
if include_latent_invertibility:
for i in [2, 10]:
padded_x_10_linear, padded_z_10_linear = model.get_linear_x_n_z_n(padded_x, i)
padded_x_10_nonlinear, padded_z_10_nonlinear = model.get_nonlinear_x_n_z_n(padded_x, i)
profiles_loss = masked_loss(loss_fn, padded_x_10_linear[:,:,:state_length], padded_x_10_nonlinear[:,:,:state_length], mask[:,:-i, :])
# no mask to match dimensions. Do I need a mask?
latent_loss = masked_loss(loss_fn, padded_z_10_linear[:,:,:], padded_z_10_nonlinear[:,:,:], mask[:,:-i, :latent_dim])
#latent_loss = loss_fn(padded_z_10_linear[:,:,:], padded_z_10_nonlinear[:,:,:])
future_inverting_loss_list.append(profiles_loss + 0.01*latent_loss)
else:
for i in [2, 10]: # make sure we're invertible for all 10 timesteps
padded_x_10_linear = model.new_get_linear_x_n(padded_x, i)
padded_x_10_nonlinear = model.new_get_nonlinear_x_n(padded_x, i)
future_inverting_loss_list.append(masked_loss(loss_fn, padded_x_10_linear[:,:,:state_length], padded_x_10_nonlinear[:,:,:state_length], mask[:,:-i, :]))
future_inverting_loss = sum(future_inverting_loss_list) / len(future_inverting_loss_list)
train_loss += future_inverting_weight * future_inverting_loss
future_inverting_losses.append((future_inverting_weight*future_inverting_loss).item())
if ((model_type=='HiroLRAN' or model_type=='HiroLRANDiag') and latent_loss_weight!=0):
latent_loss = model.latent_loss() # need to put a proper function here!
train_loss += latent_loss_weight * latent_loss
if controllability_weight!=0:
if include_condition_number:
controllability, condition_number = get_controllability_and_condition_number(model_type, model)
controllability_loss = controllability_weight / controllability + controllability_weight * condition_number
else:
controllability_loss = controllability_weight / get_controllability(model_type, model)
train_loss += controllability_loss # we want to maximize controllability, so we minimize the inverse
controllability_losses.append(controllability_loss.item())
# Backpropagation
train_loss.backward()
optimizer.step()
train_losses.append(train_loss.item())
#scheduler.step()
avg_train_losses.append(sum(train_losses)/len(train_losses)) # now divide by total number of samples to get mean over steps/batches
if len(controllability_losses)>0:
avg_controllability_losses.append(sum(controllability_losses)/len(controllability_losses))
else:
avg_controllability_losses.append(0)
if len(inverting_losses)>0:
avg_inverting_losses.append(sum(inverting_losses)/len(inverting_losses))
else:
avg_inverting_losses.append(0)
if len(future_inverting_losses)>0:
avg_future_inverting_losses.append(sum(future_inverting_losses)/len(future_inverting_losses))
else:
avg_future_inverting_losses.append(0)
model.eval()
val_losses=[]
with torch.no_grad():
for which_bucket in range(len(val_x_buckets)):
x_bucket=val_x_buckets[which_bucket]
y_bucket=val_y_buckets[which_bucket]
length_bucket=val_length_buckets[which_bucket]
padded_x=pad_sequence(x_bucket, batch_first=True)
padded_y=pad_sequence(y_bucket, batch_first=True)
padded_x=padded_x.to(device)
padded_y=padded_y.to(device)
model_output = model(padded_x,reset_probability=reset_probability,nwarmup=nwarmup)
model_output = model_output.to(device)
mask=get_sample_time_state_mask(state_mask, model_output.size(), length_bucket, nwarmup)
mask=mask.to(device)
val_loss=masked_loss(loss_fn,
model_output, padded_y,
mask)
val_losses.append(val_loss.item())
avg_val_losses.append(sum(val_losses)/len(val_losses))
print(f'{epoch+1:4d}/{n_epochs}({(time.time()-prev_time):0.2f}s)... train: {avg_train_losses[-1]:0.2e}, val: {avg_val_losses[-1]:0.2e};')
print(f'Modelling loss: {(avg_train_losses[-1] - avg_controllability_losses[-1] - avg_inverting_losses[-1] - avg_future_inverting_losses[-1]):0.2e}')
if controllability_weight!=0:
print(f'Controllability loss: {avg_controllability_losses[-1]:0.2e} or actual controllability {(1/(controllability_weight*avg_controllability_losses[-1])):0.2e}')
if inverting_weight!=0:
print(f'Inverting loss: {avg_inverting_losses[-1]:0.2e} or {avg_inverting_losses[-1]/inverting_weight:0.2e}')
if future_inverting_weight!=0:
print(f'Future inverting loss: {avg_future_inverting_losses[-1]:0.2e} or {avg_future_inverting_losses[-1]/future_inverting_weight:0.2e}')
# the task gets harder for curriculum learning during the ramp
# before the ramp, consider only the best model so far
if autoregression_num_steps<=1 or epoch<=autoregression_start_epoch:
relevant_val_losses=avg_val_losses
else:
# if during the ramp always save
if epoch<=autoregression_end_epoch:
relevant_val_losses=[avg_val_losses[-1]]
# after ramp consider only losses after ramp
else:
# and if we're e.g. tuning a model on a different task only consider new loss regime
relevant_val_losses=avg_val_losses[max(start_epoch,autoregression_end_epoch):]
best_epoch= ( avg_val_losses[-1]==min(relevant_val_losses) )
# in weird case we don't yet have a .tar file, e.g. if we're resuming training into a new filename,
# be sure to save the first step
if not os.path.exists(output_filename):
best_epoch=True
if (not early_saving) or best_epoch:
print(f"Checkpoint")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
#'scheduler_state_dict': scheduler.state_dict(),
'train_losses': avg_train_losses,
'controllability_losses': avg_controllability_losses,
'inverting_losses': avg_inverting_losses,
'future_inverting_losses': avg_future_inverting_losses,
'val_losses': avg_val_losses,
'profiles': profiles,
'parameters': parameters,
'calculations': calculations,
'actuators': actuators,
'model_hyperparams': model_hyperparams,
}, output_filename)
if epoch in save_epochs:
shutil.copyfile(output_filename, epoch_output_filename(epoch))
prev_time=time.time()
print(f'...took {(time.time()-start_time)/60:0.2f}min')