-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeatureExtractor.py
314 lines (216 loc) · 8.79 KB
/
featureExtractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Load the required packages
import pandas as pd
import numpy as np
import sys
import re
from urllib.parse import urlparse,urlencode
from bs4 import BeautifulSoup
from datetime import datetime
import ipaddress
import whois
import urllib
import urllib.request
import tldextract
import pickle
class FeatureExtract:
# This class contains the methods that extract the required features
# Across the entire dataset, 0 indicates legitimate url and 1 indicates phishing url
# Legitimate - 0; Phishing - 1
def __init__(self):
pass
# def rank(self,url):
# # Method to check rank of the URL by connecting to the alexa rank API
# # Returns 0 if the rank is less than 100000 for the given URL else returns 1
# try:
# #Filling the whitespaces in the URL if any
# url = urllib.parse.quote(url)
# rank = BeautifulSoup(urllib.request.urlopen("http://data.alexa.com/data?cli=10&url=" + url).read(), "xml").find(
# "REACH")['RANK']
# print('Hello')
# rank = int(rank)
# except TypeError:
# return 1
# if rank <100000:
# return 0
# else:
# return 1
def isIP(self,url):
# Method to check if an IP is found in the URL
# Returns 1 if IP is found in the given URL else returns 0
try:
ipaddress.ip_address(url)
ip = 1
except:
ip = 0
return ip
def isValid(self,domain_name):
# Method to check the validity of the URL domain
# Returns 1 if age of the domain is less than 6 else returns 0
creation_date = domain_name.creation_date
expiration_date = domain_name.expiration_date
if (isinstance(creation_date,str) or isinstance(expiration_date,str)):
try:
creation_date = datetime.strptime(creation_date,'%Y-%m-%d')
expiration_date = datetime.strptime(expiration_date,"%Y-%m-%d")
except:
return 1
if ((expiration_date is None) or (creation_date is None)):
return 1
elif ((type(expiration_date) is list) or (type(creation_date) is list)):
return 1
else:
ageofdomain = abs((expiration_date - creation_date).days)
if ((ageofdomain/30) < 6):
age = 1
else:
age = 0
return age
def domain_reg_len(self,domain_name):
# Method to check the expiration of the URL domain
# Returns 1 if the domain has expired else returns 0
print('hello')
expiration_date = domain_name.expiration_date
if isinstance(expiration_date,str):
try:
expiration_date = datetime.strptime(expiration_date,"%Y-%m-%d")
except:
return 1
if (expiration_date is None):
return 1
elif (type(expiration_date) is list):
return 1
else:
today = datetime.now()
end = abs((expiration_date - today).days)
if ((end/30) < 6):
end = 0
else:
end = 1
return end
def isat(self,url):
# Method to check for '@' in the URL
# Returns 1 if found else returns 0
if "@" in url:
return 1
else:
return 0
def isRedirect(self,url):
# Method to check for '//' in the URL
# Returns 1 if found within length of 7 for the given URL or if 'http' is found else returns 0
pos = url.rfind('//')
if pos > 6:
if pos > 7:
return 1
else:
return 0
else:
return 0
def haveDash(self,url):
# Method to check for '-' in the URL
# Returns 1 if found else returns 0
if '-' in urlparse(url).netloc:
return 1
else:
return 0
def no_sub_domain(self,url):
# Method to check number of subdomains in the URL
# Returns 0 if number of subdomains is 1 else returns 1
url = str(url)
url = url.replace("www.","")
url = url.replace("."+tldextract.extract(url).suffix,"")
count = url.count(".")
if count==1:
return 0
else:
return 1
def httpDomain(self,url):
# Method to check for 'https' in the URL
# Returns 1 if found else returns 0
domain = urlparse(url).netloc
if 'http' in domain:
return 1
else:
return 0
def LongURL(self,url):
# Method to checks the length of the URL
# Returns 0 if the length is less than 54 else returns 1
if len(url) < 54:
return 0
else:
return 1
def tinyURL(self,url):
# Method to check if the URL belong to shortening services
# Returns 1 if found else returns 0
#listing shortening services
shortening_services = r"bit\.ly|goo\.gl|shorte\.st|go2l\.ink|x\.co|ow\.ly|t\.co|tinyurl|tr\.im|is\.gd|cli\.gs|" \
r"yfrog\.com|migre\.me|ff\.im|tiny\.cc|url4\.eu|twit\.ac|su\.pr|twurl\.nl|snipurl\.com|" \
r"short\.to|BudURL\.com|ping\.fm|post\.ly|Just\.as|bkite\.com|snipr\.com|fic\.kr|loopt\.us|" \
r"doiop\.com|short\.ie|kl\.am|wp\.me|rubyurl\.com|om\.ly|to\.ly|bit\.do|t\.co|lnkd\.in|db\.tt|" \
r"qr\.ae|adf\.ly|goo\.gl|bitly\.com|cur\.lv|tinyurl\.com|ow\.ly|bit\.ly|ity\.im|q\.gs|is\.gd|" \
r"po\.st|bc\.vc|twitthis\.com|u\.to|j\.mp|buzurl\.com|cutt\.us|u\.bb|yourls\.org|x\.co|" \
r"prettylinkpro\.com|scrnch\.me|filoops\.info|vzturl\.com|qr\.net|1url\.com|tweez\.me|v\.gd|" \
r"tr\.im|link\.zip\.net"
match=re.search(shortening_services,url)
if match:
return 1
else:
return 0
class PredictURL(FeatureExtract):
# This class inherits FeatureExtract class to access all its methods
# The main classification of the URL is done via the methods of this class
def __init__(self):
pass
def predict(self,url):
print("hi")
# Method to call all the methods in the FeatureExtract class to
#get the features of the given URL and appends it to an np array
# Returns the result of classification by calling the classify function
feature = []
dns = 0
# URL is passed to whois API to fetch the domain name
# try:
# print("hi")
# domain_name = whois.whois(urlparse(url).netloc)
# print("hi2")
# except:
# dns = 1
#Domain based features (3)
# feature.append(self.rank(url))
# feature.append(1 if dns == 1 else self.isValid(domain_name))
# feature.append(1 if dns == 1 else self.domain_reg_len(domain_name))
#Address bar based features (5)
feature.append(self.isIP(url))
feature.append(self.isat(url))
feature.append(self.isRedirect(url))
feature.append(self.haveDash(url))
feature.append(self.no_sub_domain(url))
feature.append(self.LongURL(url))
feature.append(self.tinyURL(url))
return self.classify(np.array(feature).reshape((1,-1)))
def __getstate__(self):
# this method is called when you are
# going to pickle the class, to know what to pickle
state = self.__dict__.copy()
# don't pickle the parameter fun. otherwise will raise
# AttributeError: Can't pickle local object 'Process.__init__.<locals>.<lambda>'
return state
def __setstate__(self, state):
self.__dict__.update(state)
def classify(self,features):
#Method to classify the URL, given its features.
#It loads the saved mode in the pickle file to perform the classification
# Load the pickle file
pick_file = open('phishing_classifier.pkl', 'rb')
Pickled_sample_Model = pickle.load(pick_file)
pick_file.close()
# Classify the URL features using the loaded pickle file
result = Pickled_sample_Model.predict(features)
if result == 0:
return "Given website is a legitimate site"
else:
return "Given website is a phishing site"
# Main function
def main():
pass
if __name__ == "__main__":
main()