-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_11conv_DQN_Nets.py
49 lines (42 loc) · 1.88 KB
/
_11conv_DQN_Nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import tensorflow as tf
from tensorflow.keras import layers,models
from tensorflow.keras.optimizers import Adam
import os
class DQNAgent:
def __init__(self,rows,columns,action_size):
self.rows=rows
self.columns=columns
self.state_size=(self.rows,self.columns,1)
self.action_size=action_size
#self.memory=deque()
self.gamma=0.95 #discount rate
self.epsilon=1.0 #exploration rate
self.epsilon_min=0.01
self.epsilon_decay=0.995
self.learning_rate=0.001
#Net data
self.output_shape=self.columns
self.modelQ=self.__build_model_Q()
self.modelQ.save('model_action_predictor.h5')
self.modelQ.save_weights('model_weights_Q.h5')
#save model to Cloud bucket
cmd1="gsutil cp *.h5 gs://bert-pl/ConnectX/"
os.system(cmd1)
#self.entropy=0
def __build_model_Q(self):
#Neural Net for Deep-Q learning Model
inputs = tf.keras.Input(shape=(self.state_size), name='input_states')
#Convolution part
conv_1 = layers.Conv2D(32, (3, 3), activation='relu',padding='same',name='conv_1')(inputs)
maxpool_1 =layers.MaxPooling2D((2, 2),name='maxpool_1')(conv_1)
conv_2 = layers.Conv2D(64, (3, 3), activation='relu',name='conv_2')(maxpool_1)
#Dense part
flatten =layers.Flatten()(conv_2)
norm_lay=layers.LayerNormalization(name='norm_lay')(flatten)
x = layers.Dense(64, activation='elu',kernel_initializer='glorot_normal',name='hidden_layer2')(norm_lay)
outputs = layers.Dense(self.output_shape,activation='linear',kernel_initializer='glorot_normal',name='output_layer')(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs, name='Q_values_model')
model.compile(loss='mse',
optimizer=Adam(lr=self.learning_rate))
model.summary()
return model