-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoplab_api.py
768 lines (596 loc) · 29.8 KB
/
oplab_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
import os
import requests
import json
import pandas as pd
import numpy as np
from scipy.stats import norm
from scipy.optimize import brentq
import os
import requests
import pandas as pd
from datetime import datetime
# NOT USED
## 1. Data Fetching and parsing functions.
def fetch_interest(src='cetip'):
# Keeping this function as is, assuming it fetches the appropriate risk-free rate for Brazil
url = 'https://api.oplab.com.br/v3/market/interest_rates'
headers = {
'Access-Token': os.getenv('OPLAB_API_KEY')
}
response = requests.get(url, headers=headers)
data = json.loads(response.text)
df = pd.DataFrame(data)
df['updated_at'] = pd.to_datetime(df['updated_at']).dt.strftime('%Y-%m-%d')
if src == 'cetip':
return df['value'][1]/100
else:
return df['value'][0]/100
# USED ON
#1.1 Fetch active option chani for a given day
def fetch_options_data():
url = 'https://api.oplab.com.br/v3/market/options/IBOV'
headers = {
'Access-Token': os.getenv('OPLAB_API_KEY')
}
response = requests.get(url, headers=headers)
return parse_options_to_dataframe(response.text)
#GET HISTORICAL OPTION CHAIN - USED
def get_historical_options(spot, start, end, symbol=None):
"""
Fetch historical options data from the API.
Args:
spot (str): The spot symbol (e.g., 'PETR4').
start (str): The start date in 'YYYY-MM-DD' format.
end (str): The end date in 'YYYY-MM-DD' format.
symbol (str, optional): The option symbol (e.g., 'PETRA230'). Default is None.
Returns:
list: A list of historical options data if successful, otherwise None.
"""
# Fetch the access token from environment variable
access_token = os.getenv('OPLAB_API_KEY')
# Check if the access token is set
if not access_token:
print("Error: Access token not found. Please set the 'OPLAB_API_KEY' environment variable.")
return None
# Construct the base URL
url = f'https://api.oplab.com.br/v3/market/historical/options/{spot}/{start}/{end}'
# Append the symbol to the URL if provided
if symbol:
url += f'?symbol={symbol}'
headers = {
'Access-Token': access_token
}
try:
# Make the GET request
response = requests.get(url, headers=headers)
response.raise_for_status() # Raise an HTTPError if the HTTP request returned an unsuccessful status code
# Parse the JSON response
data = response.json()
hist = parse_historical_options_data(data)
hist['time'] = pd.to_datetime(hist['time'])
hist['date'] = hist['time'].dt.normalize()
return hist
except requests.exceptions.RequestException as e:
print(f"Error fetching data: {e}")
return None
# used
def parse_options_to_dataframe(json_data):
# Keeping this function as is
if isinstance(json_data, str):
data = json.loads(json_data)
else:
data = json_data
df = pd.DataFrame(data)
columns = ['symbol'] + [col for col in df.columns if col != 'symbol']
df = df[columns]
df['time'] = pd.to_datetime(df['time'], unit='ms')
return df
# used
def parse_historical_options_data(data):
"""
Parse the historical options data response into a DataFrame.
Args:
data (list): The list of historical options data as returned from the API.
Returns:
pd.DataFrame: A DataFrame containing parsed historical options data.
"""
# List to store parsed records
parsed_data = []
# Iterate through each record in the response data
for record in data:
# Initialize a dictionary for storing flattened data
parsed_record = {}
# Dynamically extract fields from the main record
for key, value in record.items():
# If the key is 'spot', extract the 'price' value
if key == 'spot' and isinstance(value, dict):
parsed_record['spot_price'] = value.get('price')
# If the key is 'time', parse it to 'YYYY-MM-DD' format
elif key == 'time' and isinstance(value, str):
try:
# Parse the time string and format it as 'YYYY-MM-DD'
parsed_record['time'] = datetime.strptime(value, "%Y-%m-%dT%H:%M:%S.%fZ").strftime("%Y-%m-%d")
except ValueError:
# Handle the case where the time format might be different
parsed_record['time'] = value # Keep the original if parsing fails
# Otherwise, directly add the key-value pair
else:
parsed_record[key] = value
# Append the parsed record to the list
parsed_data.append(parsed_record)
# Convert the list of dictionaries into a DataFrame
df = pd.DataFrame(parsed_data)
return df
# USED
def filter_options_data(options_data):
# Remove options with both zero bid and ask price
filtered_data = options_data[(options_data['bid'] > 0) | (options_data['ask'] > 0)]
# Allow bid == ask, but remove cases where ask < bid
filtered_data = filtered_data[filtered_data['bid'] <= filtered_data['ask']]
# Remove extreme outliers in strike prices
median_strike = filtered_data['strike'].median()
filtered_data = filtered_data[
(filtered_data['strike'] >= 0.1 * median_strike) &
(filtered_data['strike'] <= 10 * median_strike)
]
# Ensure we have both call and put options
if 'category' in filtered_data.columns:
call_options = filtered_data[filtered_data['category'] == 'CALL']
put_options = filtered_data[filtered_data['category'] == 'PUT']
if call_options.empty or put_options.empty:
raise ValueError("Missing either call or put options after filtering")
else:
raise ValueError("'category' column not found in options data")
return filtered_data
## CALCULATIONS FOR LIVE
def select_near_and_next_term(options_data):
sorted_options = options_data.sort_values('days_to_maturity')
unique_expirations = sorted_options['days_to_maturity'].unique()
if len(unique_expirations) < 2:
raise ValueError(f"Insufficient number of unique expirations. Available expirations: {unique_expirations}")
# Select the two nearest expiration dates
near_term = unique_expirations[0]
next_term = unique_expirations[1]
near_term_options = sorted_options[sorted_options['days_to_maturity'] == near_term]
next_term_options = sorted_options[sorted_options['days_to_maturity'] == next_term]
print(f"Near-term expiry: {near_term} days")
print(f"Next-term expiry: {next_term} days")
return near_term_options, next_term_options
def calculate_forward_price(options_data, risk_free_rate, time_to_expiration):
call_options = options_data[options_data['category'] == 'CALL']
put_options = options_data[options_data['category'] == 'PUT']
print(f"Number of call options: {len(call_options)}")
print(f"Number of put options: {len(put_options)}")
if call_options.empty and put_options.empty:
raise ValueError("No options available for forward price calculation")
if call_options.empty or put_options.empty:
print("Warning: Only one type of option available. Using spot price as forward price.")
return options_data['spot_price'].iloc[0]
merged_options = pd.merge(call_options, put_options, on='strike', suffixes=('_call', '_put'))
print(f"Number of merged options: {len(merged_options)}")
if merged_options.empty:
print("Warning: No matching strike prices for call and put options. Using spot price as forward price.")
return options_data['spot_price'].iloc[0]
merged_options['price_diff'] = abs(merged_options['close_call'] - merged_options['close_put'])
min_diff_strike = merged_options.loc[merged_options['price_diff'].idxmin(), 'strike']
call_price = merged_options.loc[merged_options['strike'] == min_diff_strike, 'close_call'].values[0]
put_price = merged_options.loc[merged_options['strike'] == min_diff_strike, 'close_put'].values[0]
forward_price = min_diff_strike + np.exp(risk_free_rate * time_to_expiration) * (call_price - put_price)
return forward_price
def select_strikes(options_data, forward_price):
# Find K0 (the strike price immediately below the forward index level)
K0 = options_data[options_data['strike'] <= forward_price]['strike'].max()
# Select out-of-the-money puts
otm_puts = options_data[(options_data['strike'] < K0) & (options_data['category'] == 'PUT')]
# Select out-of-the-money calls
otm_calls = options_data[(options_data['strike'] > K0) & (options_data['category'] == 'CALL')]
# Include K0 put and call
k0_options = options_data[options_data['strike'] == K0]
return pd.concat([otm_puts, k0_options, otm_calls])
def calculate_variance(options_data, forward_price, K0, T, R):
options_data = options_data.sort_values('strike')
options_data['delta_K'] = options_data['strike'].diff().fillna(options_data['strike'].diff().iloc[-1])
def option_contribution(row):
Q = (row['bid'] + row['ask']) / 2
return (row['delta_K'] / row['strike']**2) * np.exp(R * T) * Q
options_data['contribution'] = options_data.apply(option_contribution, axis=1)
sum_contribution = options_data['contribution'].sum()
print(f"Sum of contributions: {sum_contribution}")
print(f"Forward price: {forward_price}, K0: {K0}")
if sum_contribution == 0 or np.isnan(sum_contribution) or np.isnan(K0):
print("Warning: Invalid data for variance calculation. Using a simplified variance estimation.")
# Use the average of bid-ask spread as a simple volatility estimator
avg_spread = (options_data['ask'] - options_data['bid']).mean() / options_data['strike'].mean()
return (avg_spread ** 2) * (365 / T) # Annualized variance
variance = (2/T) * sum_contribution - (1/T) * ((forward_price/K0 - 1)**2)
if np.isnan(variance) or variance < 0:
print(f"Warning: Calculated variance is {variance}. Using absolute value.")
variance = abs(variance)
return variance
#calculate live
def calculate_vix():
options_data = fetch_options_data()
print(f"Original data shape: {options_data.shape}")
filtered_options = filter_options_data(options_data)
print(f"Filtered data shape: {filtered_options.shape}")
if filtered_options.empty:
raise ValueError("No options data available after filtering")
try:
near_term_options, next_term_options = select_near_and_next_term(filtered_options)
print(f"Near-term options shape: {near_term_options.shape}")
print(f"Next-term options shape: {next_term_options.shape}")
risk_free_rate = fetch_interest() # Consider fetching this dynamically
T1 = near_term_options['days_to_maturity'].iloc[0] / 365
T2 = next_term_options['days_to_maturity'].iloc[0] / 365
print(f"T1: {T1}, T2: {T2}")
print("Calculating forward price for near-term options:")
forward_price_1 = calculate_forward_price(near_term_options, risk_free_rate, T1)
print("Calculating forward price for next-term options:")
forward_price_2 = calculate_forward_price(next_term_options, risk_free_rate, T2)
print(f"Forward price 1: {forward_price_1}, Forward price 2: {forward_price_2}")
K0_1 = near_term_options[near_term_options['strike'] <= forward_price_1]['strike'].max()
K0_2 = next_term_options[next_term_options['strike'] <= forward_price_2]['strike'].max()
if np.isnan(K0_1) or np.isnan(K0_2):
print("Warning: Unable to determine K0. Using forward price as K0.")
K0_1 = K0_1 if not np.isnan(K0_1) else forward_price_1
K0_2 = K0_2 if not np.isnan(K0_2) else forward_price_2
print("Calculating variance for near-term options:")
variance_1 = calculate_variance(near_term_options, forward_price_1, K0_1, T1, risk_free_rate)
print("Calculating variance for next-term options:")
variance_2 = calculate_variance(next_term_options, forward_price_2, K0_2, T2, risk_free_rate)
print(f"Variance 1: {variance_1}, Variance 2: {variance_2}")
w1 = (T2 - 30/365) / (T2 - T1)
w2 = (30/365 - T1) / (T2 - T1)
print(f"Weight 1: {w1}, Weight 2: {w2}")
variance_30_day = w1 * variance_1 * (T1 / (30/365)) + w2 * variance_2 * (T2 / (30/365))
vix = 100 * np.sqrt(variance_30_day * 365 / 30)
return vix
except Exception as e:
print(f"Error in VIX calculation: {str(e)}")
print("Near-term options:")
print(near_term_options)
print("Next-term options:")
print(next_term_options)
raise
## Calculate alternate VIX for live
def estimate_implied_volatility(option, spot_price, T, risk_free_rate):
strike = option['strike']
option_price = option['close']
option_type = option['category'].lower()
# Simple volatility estimation based on Brenner-Subrahmanyam approximation
if option_type == 'call':
moneyness = np.log(spot_price / strike)
else: # put
moneyness = np.log(strike / spot_price)
implied_vol = np.sqrt(2 * np.pi / T) * (option_price / spot_price) * np.exp(risk_free_rate * T / 2)
return min(max(implied_vol, 0.01), 2.0) # Cap between 1% and 200%
def calculate_variance_from_prices(options_data, T, risk_free_rate):
spot_price = options_data['spot_price'].iloc[0]
forward_price = spot_price * np.exp(risk_free_rate * T)
# Filter options to use only those within 5% of the forward price
atm_options = options_data[
(options_data['strike'] >= 0.95 * forward_price) &
(options_data['strike'] <= 1.05 * forward_price)
]
if atm_options.empty:
raise ValueError("No near-the-money options available for variance calculation")
# Sort options by strike price
atm_options = atm_options.sort_values('strike')
# Calculate delta_K
atm_options['delta_K'] = atm_options['strike'].diff()
atm_options.loc[atm_options.index[0], 'delta_K'] = atm_options['strike'].iloc[1] - atm_options['strike'].iloc[0]
atm_options.loc[atm_options.index[-1], 'delta_K'] = atm_options['strike'].iloc[-1] - atm_options['strike'].iloc[-2]
# Calculate implied volatilities
atm_options['IV'] = atm_options.apply(
lambda row: estimate_implied_volatility(row, spot_price, T, risk_free_rate),
axis=1
)
# Remove outliers (IVs more than 2 standard deviations from the mean)
mean_iv = atm_options['IV'].mean()
std_iv = atm_options['IV'].std()
atm_options = atm_options[(atm_options['IV'] > mean_iv - 2*std_iv) & (atm_options['IV'] < mean_iv + 2*std_iv)]
# Use weighted average of implied variances
total_weight = atm_options['delta_K'].sum()
weighted_variance = ((atm_options['IV'] ** 2) * atm_options['delta_K']).sum() / total_weight
return weighted_variance
def calculate_alternative_vix(risk_free_rate=0.11):
options_data = fetch_options_data()
print(f"Original data shape: {options_data.shape}")
print(f"Using risk-free rate: {risk_free_rate}")
# Filter out options with zero or NaN closing prices and add liquidity filter
filtered_options = options_data[
(options_data['close'] > 0) &
(options_data['close'].notna()) &
(options_data['volume'] > 0) # Basic liquidity filter
]
print(f"Filtered data shape: {filtered_options.shape}")
if filtered_options.empty:
raise ValueError("No valid options data available after filtering")
# Select near-term and next-term options
sorted_options = filtered_options.sort_values('days_to_maturity')
unique_expirations = sorted_options['days_to_maturity'].unique()
if len(unique_expirations) < 2:
raise ValueError(f"Insufficient number of unique expirations. Available expirations: {unique_expirations}")
near_term = unique_expirations[0]
next_term = unique_expirations[1]
near_term_options = sorted_options[sorted_options['days_to_maturity'] == near_term]
next_term_options = sorted_options[sorted_options['days_to_maturity'] == next_term]
print(f"Near-term expiry: {near_term} days, options shape: {near_term_options.shape}")
print(f"Next-term expiry: {next_term} days, options shape: {next_term_options.shape}")
# Calculate variance for each term
T1 = near_term / 365
T2 = next_term / 365
print("Calculating variance for near-term options:")
variance_1 = calculate_variance_from_prices(near_term_options, T1, risk_free_rate)
print("Calculating variance for next-term options:")
variance_2 = calculate_variance_from_prices(next_term_options, T2, risk_free_rate)
print(f"Variance 1: {variance_1}, Variance 2: {variance_2}")
# Calculate weights
w1 = (T2 - 30/365) / (T2 - T1)
w2 = (30/365 - T1) / (T2 - T1)
print(f"Weight 1: {w1}, Weight 2: {w2}")
# Calculate 30-day variance
variance_30_day = w1 * variance_1 * (T1 / (30/365)) + w2 * variance_2 * (T2 / (30/365))
# Calculate VIX
vix = 100 * np.sqrt(variance_30_day * 365 / 30)
return vix
##########HISTORICAL
def calculate_variance(options, T, r, spot_price):
"""
Calculates the variance for a given set of options, time to expiration T, and risk-free rate r.
"""
# Separate calls and puts
calls = options[options['type'] == 'CALL']
puts = options[options['type'] == 'PUT']
# Merge calls and puts on strike price
options_merged = pd.merge(calls, puts, on='strike', suffixes=('_call', '_put'))
if options_merged.empty:
return None # Not enough data to calculate variance
# Calculate F using the spot price
F = spot_price * np.exp(r * T)
# Set K0 as the strike price equal to or immediately below F
strikes = np.sort(options['strike'].unique())
K0 = strikes[strikes <= F].max()
# Calculate Delta K
delta_K = {}
strikes_sorted = sorted(strikes)
for i, K in enumerate(strikes_sorted):
if i == 0:
delta_K[K] = strikes_sorted[i+1] - K
elif i == len(strikes_sorted) -1:
delta_K[K] = K - strikes_sorted[i-1]
else:
delta_K[K] = (strikes_sorted[i+1] - strikes_sorted[i-1]) / 2
# Sum over all strikes
sigma_squared = 0
for K in strikes_sorted:
if K < K0:
# Use OTM puts
option_row = options[(options['strike'] == K) & (options['type'] == 'PUT')]
if not option_row.empty:
Q_K = option_row['premium'].iloc[0]
else:
continue
elif K > K0:
# Use OTM calls
option_row = options[(options['strike'] == K) & (options['type'] == 'CALL')]
if not option_row.empty:
Q_K = option_row['premium'].iloc[0]
else:
continue
else:
# K == K0
option_call = options[(options['strike'] == K) & (options['type'] == 'CALL')]
option_put = options[(options['strike'] == K) & (options['type'] == 'PUT')]
if not option_call.empty and not option_put.empty:
Q_K_call = option_call['premium'].iloc[0]
Q_K_put = option_put['premium'].iloc[0]
Q_K = (Q_K_call + Q_K_put) / 2
else:
continue
# Delta K
deltaK = delta_K[K]
# Adjust Q_K if necessary to match the scale of K^2
Q_K_adjusted = Q_K # Apply any necessary scaling here
# Contribution to sigma_squared
sigma_squared += (deltaK / (K**2)) * Q_K_adjusted * np.exp(r * T)
# Final sigma_squared calculation
sigma_squared = (2 / T) * sigma_squared - (1 / T) * ((F / K0 - 1) ** 2)
print(f"F: {F}, K0: {K0}")
print(f"deltaK: {deltaK}")
print(f"Q_K at K={K}: {Q_K_adjusted}")
print(f"Contribution to sigma_squared at K={K}: {(deltaK / (K**2)) * Q_K_adjusted * np.exp(r * T)}")
return sigma_squared
## THIS ONE
def calculate_vix_df(spot, start, end):
# Step 1: Load the data
df = get_historical_options(spot=spot, start=start, end=end)
if df is None or df.empty:
print("No data returned from get_historical_options.")
return None
# Ensure 'time' and 'due_date' are datetime and tz-naive
df['time'] = pd.to_datetime(df['time']).dt.tz_localize(None)
df['due_date'] = pd.to_datetime(df['due_date']).dt.tz_localize(None)
# Convert to numeric and drop invalid rows
df['strike'] = pd.to_numeric(df['strike'], errors='coerce')
df['premium'] = pd.to_numeric(df['premium'], errors='coerce')
df['spot_price'] = pd.to_numeric(df['spot_price'], errors='coerce')
df.dropna(subset=['strike', 'premium', 'spot_price'], inplace=True)
# Step 2: Scale down the index levels and strikes
scale_factor = 1000
df['strike'] = df['strike'] / scale_factor
df['spot_price'] = df['spot_price'] / scale_factor
# Step 3: Adjust premiums using the contract multiplier
contract_multiplier = 100 # Replace with the actual multiplier
df['premium'] = df['premium'] * contract_multiplier
# Initialize an empty list to store results
vix_results = []
# Get the list of unique dates in the dataset
unique_dates = df['time'].unique()
# Iterate over each date
for current_date in unique_dates:
# Fetch the risk-free rate (r) for the current date
r = fetch_interest(current_date) # Replace with actual interest rate fetching logic
# Filter data for the current date
daily_options = df[df['time'] == current_date].copy()
# Get the spot price for the current date
spot_price = daily_options['spot_price'].iloc[0]
# Step 2: Prepare the data for the current date
# Calculate Time to Expiration in years
daily_options['T'] = (daily_options['due_date'] - daily_options['time']).dt.days / 365
# Remove options that have already expired or have zero time to expiration
daily_options = daily_options[daily_options['T'] > 0]
# Step 3: Select maturities bracketing 30 days
daily_options['days_to_expiration'] = (daily_options['due_date'] - daily_options['time']).dt.days
# Remove maturities that are expired (negative days)
daily_options = daily_options[daily_options['days_to_expiration'] > 0]
maturities = daily_options['due_date'].unique()
maturities_days = [(maturity, (maturity - current_date).days) for maturity in maturities]
# Sort maturities based on how close they are to 30 days
maturities_sorted = sorted(maturities_days, key=lambda x: abs(x[1] - 30))
# Select two maturities that bracket 30 days
if len(maturities_sorted) < 2:
print(f"Date {current_date.date()}: Not enough maturities to bracket 30 days.")
continue # Skip to the next date
else:
T1_date, T1_days = maturities_sorted[0]
T2_date, T2_days = maturities_sorted[1]
# Ensure T1 < T2
if T1_days > T2_days:
T1_date, T1_days, T2_date, T2_days = T2_date, T2_days, T1_date, T1_days
# Get options for T1 and T2
options_T1 = daily_options[daily_options['due_date'] == T1_date]
options_T2 = daily_options[daily_options['due_date'] == T2_date]
# Calculate variance for T1
T1 = T1_days / 365
sigma_squared_T1 = calculate_variance(options_T1, T1, r, spot_price)
# Calculate variance for T2
T2 = T2_days / 365
sigma_squared_T2 = calculate_variance(options_T2, T2, r, spot_price)
# Check if variances are calculated successfully
if sigma_squared_T1 is None or sigma_squared_T2 is None:
print(f"Date {current_date.date()}: Not enough data to calculate variance.")
continue # Skip to the next date
# Interpolate to get 30-day variance
T_30 = 30 / 365 # 30 days expressed in years
# Correct interpolation formula
sigma_squared_30 = (
T1 * sigma_squared_T1 * ((T2 - T_30) / (T2 - T1)) +
T2 * sigma_squared_T2 * ((T_30 - T1) / (T2 - T1))
)
# Ensure sigma_squared_30 is positive
if sigma_squared_30 <= 0:
print(f"Date {current_date.date()}: Negative variance calculated.")
continue # Skip to the next date
# Compute VIX
VIX = 100 * np.sqrt(sigma_squared_30)
# Append result to the list
vix_results.append({'Date': current_date.date(), 'VIX': VIX})
# Optional: print the result
print(f"Date {current_date.date()}: The calculated VIX-equivalent index is {VIX:.2f}")
# Convert results to a DataFrame
vix_df = pd.DataFrame(vix_results)
return vix_df
import pandas as pd
import numpy as np
## NOT USED
def calculate_daily_vix(df):
# Initialize an empty list to store results
vix_results = []
# Get the list of unique dates in the dataset
unique_dates = df['time'].unique()
for current_date in unique_dates:
# Filter data for the current date
daily_options = df[df['time'] == current_date].copy()
spot_price = daily_options['spot_price'].iloc[0]
# Ensure 'due_date' and 'time' are datetime and tz-naive
daily_options['due_date'] = pd.to_datetime(daily_options['due_date']).dt.tz_localize(None)
daily_options['time'] = pd.to_datetime(daily_options['time']).dt.tz_localize(None)
# Calculate Days to Maturity if not already calculated
daily_options['days_to_maturity'] = (daily_options['due_date'] - daily_options['time']).dt.days
# Group options by maturity
maturities = daily_options['due_date'].unique()
variances = []
times = []
for maturity in maturities:
options = daily_options[daily_options['due_date'] == maturity].copy()
T = options['days_to_maturity'].iloc[0] / 365
times.append(T)
from Brapi import BrAPIWrapper
api = BrAPIWrapper()
# Fetch or calculate risk-free rate for the date and maturity
# Get prime rate data for the current date
prime_rate_data = api.get_prime_rate(start='01/01/2022', end='01/06/2024')
prime_rate_data['date'] = pd.to_datetime(prime_rate_data.index)
prime_rate_data.reset_index(drop=True, inplace=True)
prime_rate_data.rename(columns={'prime_rate': 'rate'}, inplace=True)
# Match the date and get the rate
r = prime_rate_data[prime_rate_data['date'].dt.date == current_date.date()]['rate'].iloc[0]
# Calculate forward index level F
F = spot_price * np.exp(r * T)
# Determine K0 (strike price immediately below the forward price)
options['strike'] = options['strike'].astype(float)
K0 = options[options['strike'] <= F]['strike'].max()
# Handle case where no strike is below F
if pd.isna(K0):
K0 = options['strike'].min()
# Calculate ΔK
options = options.sort_values('strike')
strikes = options['strike'].unique()
if len(strikes) < 2:
# Not enough strikes to compute delta_K properly
print(f"Skipping maturity {maturity.date()} on date {current_date.date()} due to insufficient strikes.")
continue
else:
delta_K = {}
for i, K in enumerate(strikes):
if i == 0:
delta_K[K] = strikes[i+1] - K
elif i == len(strikes) - 1:
delta_K[K] = K - strikes[i-1]
else:
delta_K[K] = (strikes[i+1] - strikes[i-1]) / 2
options['deltaK'] = options['strike'].map(delta_K)
# Calculate the variance contribution for each option
options['variance_contribution'] = (
(2 * options['deltaK'] / options['strike'] ** 2) *
np.exp(r * T) *
options['premium']
)
# Sum the variance contributions
sigma_squared = options['variance_contribution'].sum()
# Subtract the adjustment term
sigma_squared -= (1 / T) * ((F / K0 - 1) ** 2)
variances.append({'sigma_squared': sigma_squared, 'T': T})
# Interpolate variance to 30 days
if len(variances) >= 2:
# Sort variances by T
variances = sorted(variances, key=lambda x: x['T'])
T1 = variances[0]['T']
T2 = variances[1]['T']
sigma_squared_T1 = variances[0]['sigma_squared']
sigma_squared_T2 = variances[1]['sigma_squared']
# Interpolate to 30-day variance
N30 = 30 / 365
sigma_squared_30 = (
sigma_squared_T1 * (T2 - N30) / (T2 - T1) +
sigma_squared_T2 * (N30 - T1) / (T2 - T1)
)
elif len(variances) == 1:
# If only one variance is available, use it directly
sigma_squared_30 = variances[0]['sigma_squared']
else:
# No variances were calculated for this date
print(f"No variances calculated for date {current_date.date()}. Skipping VIX calculation.")
continue
# Ensure sigma_squared_30 is non-negative
if sigma_squared_30 < 0:
print(f"Negative variance calculated for date {current_date.date()}. Setting variance to zero.")
sigma_squared_30 = 0
# Calculate VIX
VIX = 100 * np.sqrt(sigma_squared_30)
# Append the result
vix_results.append({'date': current_date, 'VIX': VIX})
# Convert results to DataFrame
vix_df = pd.DataFrame(vix_results)
return vix_df