|
| 1 | +/// |
| 2 | +/// Copyright (c) 2020, Intel Corporation |
| 3 | +/// |
| 4 | +/// Redistribution and use in source and binary forms, with or without |
| 5 | +/// modification, are permitted provided that the following conditions |
| 6 | +/// are met: |
| 7 | +/// |
| 8 | +/// * Redistributions of source code must retain the above copyright |
| 9 | +/// notice, this list of conditions and the following disclaimer. |
| 10 | +/// * Redistributions in binary form must reproduce the above |
| 11 | +/// copyright notice, this list of conditions and the following |
| 12 | +/// disclaimer in the documentation and/or other materials provided |
| 13 | +/// with the distribution. |
| 14 | +/// * Neither the name of Intel Corporation nor the names of its |
| 15 | +/// contributors may be used to endorse or promote products |
| 16 | +/// derived from this software without specific prior written |
| 17 | +/// permission. |
| 18 | +/// |
| 19 | +/// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | +/// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | +/// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 22 | +/// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 23 | +/// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 24 | +/// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| 25 | +/// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 26 | +/// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 27 | +/// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 28 | +/// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| 29 | +/// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | +/// POSSIBILITY OF SUCH DAMAGE. |
| 31 | + |
| 32 | +////////////////////////////////////////////////////////////////////// |
| 33 | +/// |
| 34 | +/// NAME: transpose |
| 35 | +/// |
| 36 | +/// PURPOSE: This program measures the time for the transpose of a |
| 37 | +/// column-major stored matrix into a row-major stored matrix. |
| 38 | +/// |
| 39 | +/// USAGE: Program input is the matrix order and the number of times to |
| 40 | +/// repeat the operation: |
| 41 | +/// |
| 42 | +/// transpose <matrix_size> <# iterations> |
| 43 | +/// |
| 44 | +/// The output consists of diagnostics to make sure the |
| 45 | +/// transpose worked and timing statistics. |
| 46 | +/// |
| 47 | +/// HISTORY: Written by Rob Van der Wijngaart, February 2009. |
| 48 | +/// Converted to C++11 by Jeff Hammond, February 2016 and May 2017. |
| 49 | +/// |
| 50 | +////////////////////////////////////////////////////////////////////// |
| 51 | + |
| 52 | +#include "prk_util.h" |
| 53 | +#include "prk_sycl.h" |
| 54 | + |
| 55 | +int main(int argc, char * argv[]) |
| 56 | +{ |
| 57 | + std::cout << "Parallel Research Kernels version " << PRKVERSION << std::endl; |
| 58 | + std::cout << "C++11/DPCT Matrix transpose: B = A^T" << std::endl; |
| 59 | + |
| 60 | + ////////////////////////////////////////////////////////////////////// |
| 61 | + /// Read and test input parameters |
| 62 | + ////////////////////////////////////////////////////////////////////// |
| 63 | + |
| 64 | + int iterations; |
| 65 | + size_t order; |
| 66 | + try { |
| 67 | + if (argc < 3) { |
| 68 | + throw "Usage: <# iterations> <matrix order>"; |
| 69 | + } |
| 70 | + |
| 71 | + iterations = std::atoi(argv[1]); |
| 72 | + if (iterations < 1) { |
| 73 | + throw "ERROR: iterations must be >= 1"; |
| 74 | + } |
| 75 | + |
| 76 | + order = std::atoi(argv[2]); |
| 77 | + if (order <= 0) { |
| 78 | + throw "ERROR: Matrix Order must be greater than 0"; |
| 79 | + } else if (order > prk::get_max_matrix_size()) { |
| 80 | + throw "ERROR: matrix dimension too large - overflow risk"; |
| 81 | + } |
| 82 | + } |
| 83 | + catch (const char * e) { |
| 84 | + std::cout << e << std::endl; |
| 85 | + return 1; |
| 86 | + } |
| 87 | + |
| 88 | + std::cout << "Number of iterations = " << iterations << std::endl; |
| 89 | + std::cout << "Matrix order = " << order << std::endl; |
| 90 | + |
| 91 | + sycl::queue q(sycl::default_selector{}); |
| 92 | + prk::SYCL::print_device_platform(q); |
| 93 | + |
| 94 | + ////////////////////////////////////////////////////////////////////// |
| 95 | + // Allocate space for the input and transpose matrix |
| 96 | + ////////////////////////////////////////////////////////////////////// |
| 97 | + |
| 98 | + const size_t nelems = (size_t)order * (size_t)order; |
| 99 | + const size_t bytes = nelems * sizeof(double); |
| 100 | + double * h_a = syclx::malloc_host<double>( nelems, q); |
| 101 | + double * h_b = syclx::malloc_host<double>( nelems, q); |
| 102 | + |
| 103 | + // fill A with the sequence 0 to order^2-1 |
| 104 | + for (int j=0; j<order; j++) { |
| 105 | + for (int i=0; i<order; i++) { |
| 106 | + h_a[j*order+i] = static_cast<double>(order*j+i); |
| 107 | + h_b[j*order+i] = static_cast<double>(0); |
| 108 | + } |
| 109 | + } |
| 110 | + |
| 111 | + // copy input from host to device |
| 112 | + double * A = syclx::malloc_device<double>( nelems, q); |
| 113 | + double * B = syclx::malloc_device<double>( nelems, q); |
| 114 | + q.memcpy(A, &(h_a[0]), bytes).wait(); |
| 115 | + q.memcpy(B, &(h_b[0]), bytes).wait(); |
| 116 | + |
| 117 | + auto trans_time = 0.0; |
| 118 | + |
| 119 | + for (int iter = 0; iter<=iterations; iter++) { |
| 120 | + |
| 121 | + if (iter==1) trans_time = prk::wtime(); |
| 122 | + |
| 123 | + q.submit([&](sycl::handler& h) { |
| 124 | + |
| 125 | + h.parallel_for( sycl::range<2>{order,order}, [=] (sycl::id<2> it) { |
| 126 | +#if USE_2D_INDEXING |
| 127 | + sycl::id<2> ij{it[0],it[1]}; |
| 128 | + sycl::id<2> ji{it[1],it[0]}; |
| 129 | + B[ij] += A[ji]; |
| 130 | + A[ji] += (T)1; |
| 131 | +#else |
| 132 | + B[it[0] * order + it[1]] += A[it[1] * order + it[0]]; |
| 133 | + A[it[1] * order + it[0]] += 1.0; |
| 134 | +#endif |
| 135 | + }); |
| 136 | + }); |
| 137 | + q.wait(); |
| 138 | + } |
| 139 | + trans_time = prk::wtime() - trans_time; |
| 140 | + |
| 141 | + // copy output back to host |
| 142 | + q.memcpy(&(h_b[0]), B, bytes).wait(); |
| 143 | + |
| 144 | + syclx::free(B, q); |
| 145 | + syclx::free(A, q); |
| 146 | + |
| 147 | + ////////////////////////////////////////////////////////////////////// |
| 148 | + /// Analyze and output results |
| 149 | + ////////////////////////////////////////////////////////////////////// |
| 150 | + |
| 151 | + const double addit = (iterations+1.) * (iterations/2.); |
| 152 | + double abserr(0); |
| 153 | + for (int j=0; j<order; j++) { |
| 154 | + for (int i=0; i<order; i++) { |
| 155 | + const size_t ij = (size_t)i*(size_t)order+(size_t)j; |
| 156 | + const size_t ji = (size_t)j*(size_t)order+(size_t)i; |
| 157 | + const double reference = static_cast<double>(ij)*(1.+iterations)+addit; |
| 158 | + abserr += prk::abs(h_b[ji] - reference); |
| 159 | + } |
| 160 | + } |
| 161 | + |
| 162 | + syclx::free(h_b, q); |
| 163 | + syclx::free(h_a, q); |
| 164 | + |
| 165 | + const auto epsilon = 1.0e-8; |
| 166 | + if (abserr < epsilon) { |
| 167 | + std::cout << "Solution validates" << std::endl; |
| 168 | + auto avgtime = trans_time/iterations; |
| 169 | + auto bytes = (size_t)order * (size_t)order * sizeof(double); |
| 170 | + std::cout << "Rate (MB/s): " << 1.0e-6 * (2L*bytes)/avgtime |
| 171 | + << " Avg time (s): " << avgtime << std::endl; |
| 172 | + } else { |
| 173 | + std::cout << "ERROR: Aggregate squared error " << abserr |
| 174 | + << " exceeds threshold " << epsilon << std::endl; |
| 175 | + return 1; |
| 176 | + } |
| 177 | + |
| 178 | + return 0; |
| 179 | +} |
| 180 | + |
| 181 | + |
0 commit comments