We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
对比了一下 Tutorial 里的 QUANTUM CLASSIFIER 和 飞桨提供的手写字体识别网络,发现这两者求梯度的方式都一样,那 quantum circuit learning 里关于 Optimization procedure 的讨论有什么意义呢?既然都是用到反向传播算法求解梯度,那可不可理解为$U(\theta)$ 对应于经典网络部分的一个仿射层?都是一个向量(假设输入数据只有一笔)乘以一个矩阵。
The text was updated successfully, but these errors were encountered:
quantum circuit learning 里的求梯度是针对量子计算机设计的,而这里量桨更多的是模拟量子计算机里的量子操作。这里使用反向传播算法求梯度只是模拟的一种形式,相当于采用差分法,也是直接利用了Paddle深度学习框架。当然也可以设计采用解析法求解梯度的算法。这里主要是为了说明量子分类器如果放到真实量子计算机上也是有效的。
Sorry, something went wrong.
No branches or pull requests
对比了一下 Tutorial 里的 QUANTUM CLASSIFIER 和 飞桨提供的手写字体识别网络,发现这两者求梯度的方式都一样,那 quantum circuit learning 里关于 Optimization procedure 的讨论有什么意义呢?既然都是用到反向传播算法求解梯度,那可不可理解为$U(\theta)$ 对应于经典网络部分的一个仿射层?都是一个向量(假设输入数据只有一笔)乘以一个矩阵。
The text was updated successfully, but these errors were encountered: