Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

4090D比4060TI 同训练批次情况下,慢20%以上 #3852

Open
1 task done
wujingxin521 opened this issue Nov 20, 2024 · 1 comment
Open
1 task done

4090D比4060TI 同训练批次情况下,慢20%以上 #3852

wujingxin521 opened this issue Nov 20, 2024 · 1 comment
Assignees
Labels
question Further information is requested

Comments

@wujingxin521
Copy link

wujingxin521 commented Nov 20, 2024

问题确认 Search before asking

  • 我已经搜索过问题,但是没有找到解答。I have searched the question and found no related answer.

请提出你的问题 Please ask your question

问题:使用的paddlseg2.8 ,配合Cuda11.8 +cudnn8.9.7 。在训练参数一样的情况下,使用“TUF-RTX4090 D-24G-GAMING”比4060TI训练慢20% 。已排除以下条件
1.已确认训练参数无差异:批次=4情况下, 4060TI占用14.3G显存,cuda占用40%, 4090占用15G,cuda占用20%;
2.已确认安装最新版本显卡驱动,安装的cuda=11.8,cudnn=8.9.7,都已经配置环境变量;
3.使用Anaconda安装运行环境, 安装带cuda版本的paddleseg2.8 ;俩台电脑都一样;
4.都是相同品牌固态硬盘 , 使用率都低于30%;
5.操作系统都未最新版本win10;

存在以下差异:
1.CPU:4060TI使用的是i7-10870, 4090D使用的CPU是i9-13900K;
2. 4090D发布前后,cuda发布12.X 。

因为机台不能上网。需要收集可能原因,到现场排查问题。需要排查哪些方面,可能原因是?

@wujingxin521 wujingxin521 added the question Further information is requested label Nov 20, 2024
@Sunting78
Copy link
Collaborator

是PaddleSeg哪一个模型呢?查看下两个GPU的实际利用率,是否有其他后台进程等。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
question Further information is requested
Projects
None yet
Development

No branches or pull requests

2 participants