-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
semantic_connectivity_loss.py
180 lines (152 loc) · 7.5 KB
/
semantic_connectivity_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
@manager.LOSSES.add_component
class SemanticConnectivityLoss(nn.Layer):
'''
SCL (Semantic Connectivity-aware Learning) framework, which introduces a SC Loss (Semantic Connectivity-aware Loss)
to improve the quality of segmentation results from the perspective of connectivity. Support multi-class segmentation.
The original article refers to
Lutao Chu, Yi Liu, Zewu Wu, Shiyu Tang, Guowei Chen, Yuying Hao, Juncai Peng, Zhiliang Yu, Zeyu Chen, Baohua Lai, Haoyi Xiong.
"PP-HumanSeg: Connectivity-Aware Portrait Segmentation with a Large-Scale Teleconferencing Video Dataset"
In WACV 2022 workshop
https://arxiv.org/abs/2112.07146
Running process:
Step 1. Connected Components Calculation
Step 2. Connected Components Matching and SC Loss Calculation
'''
def __init__(self, ignore_index=255, max_pred_num_conn=10, use_argmax=True):
'''
Args:
ignore_index (int): Specify a pixel value to be ignored in the annotated image and does not contribute to
the input gradient.When there are pixels that cannot be marked (or difficult to be marked) in the marked
image, they can be marked as a specific gray value. When calculating the loss value, the pixel corresponding
to the original image will not be used as the independent variable of the loss function. *Default:``255``*
max_pred_num_conn (int): Maximum number of predicted connected components. At the beginning of training,
there will be a large number of connected components, and the calculation is very time-consuming.
Therefore, it is necessary to limit the maximum number of predicted connected components,
and the rest will not participate in the calculation.
use_argmax (bool): Whether to use argmax for logits.
'''
super().__init__()
self.ignore_index = ignore_index
self.max_pred_num_conn = max_pred_num_conn
self.use_argmax = use_argmax
def forward(self, logits, labels):
'''
Args:
logits (Tensor): [N, C, H, W]
lables (Tensor): [N, H, W]
'''
preds = paddle.argmax(logits, axis=1) if self.use_argmax else logits
preds_np = preds.astype('uint8').numpy()
labels_np = labels.astype('uint8').numpy()
preds = paddle.to_tensor(preds, 'float32', stop_gradient=False)
multi_class_sc_loss = paddle.zeros([preds.shape[0]])
zero = paddle.to_tensor([0.]) # for accelerating
# Traverse each image
for i in range(preds.shape[0]):
sc_loss = 0
class_num = 0
pred_i = preds[i]
preds_np_i = preds_np[i]
labels_np_i = labels_np[i]
# Traverse each class
for class_ in np.unique(labels_np_i):
if class_ == self.ignore_index:
continue
class_num += 1
# Connected Components Calculation
preds_np_class = preds_np_i == class_
labels_np_class = labels_np_i == class_
pred_num_conn, pred_conn = cv2.connectedComponents(
preds_np_class.astype(np.uint8)) # pred_conn.shape = [H,W]
label_num_conn, label_conn = cv2.connectedComponents(
labels_np_class.astype(np.uint8))
origin_pred_num_conn = pred_num_conn
if pred_num_conn > 2 * label_num_conn:
pred_num_conn = min(pred_num_conn, self.max_pred_num_conn)
real_pred_num = pred_num_conn - 1
real_label_num = label_num_conn - 1
# Connected Components Matching and SC Loss Calculation
if real_label_num > 0 and real_pred_num > 0:
img_connectivity = compute_class_connectiveity(
pred_conn, label_conn, pred_num_conn,
origin_pred_num_conn, label_num_conn, pred_i,
real_label_num, real_pred_num, zero)
sc_loss += 1 - img_connectivity
elif real_label_num == 0 and real_pred_num == 0:
# if no connected component, SC Loss = 0, so pass
pass
else:
preds_class = pred_i == int(class_)
not_preds_class = paddle.bitwise_not(preds_class)
labels_class = paddle.to_tensor(labels_np_class)
missed_detect = labels_class * not_preds_class
missed_detect_area = paddle.sum(missed_detect).astype(
'float32')
sc_loss += missed_detect_area / missed_detect.numel() + 1
multi_class_sc_loss[
i] = sc_loss / class_num if class_num != 0 else 0
multi_class_sc_loss = paddle.mean(multi_class_sc_loss)
return multi_class_sc_loss
def compute_class_connectiveity(pred_conn, label_conn, pred_num_conn,
origin_pred_num_conn, label_num_conn, pred,
real_label_num, real_pred_num, zero):
pred_conn = paddle.to_tensor(pred_conn)
label_conn = paddle.to_tensor(label_conn)
pred_conn = F.one_hot(pred_conn, origin_pred_num_conn)
label_conn = F.one_hot(label_conn, label_num_conn)
ious = paddle.zeros((real_label_num, real_pred_num))
pair_conn_sum = paddle.to_tensor([0.], stop_gradient=False)
for i in range(1, label_num_conn):
label_i = label_conn[:, :, i]
pair_conn = paddle.to_tensor([0.], stop_gradient=False)
pair_conn_num = 0
for j in range(1, pred_num_conn):
if hasattr(paddle.Tensor, "contiguous"):
pred_j_mask = pred_conn[:, :, j].contiguous()
else:
pred_j_mask = pred_conn[:, :, j]
pred_j = pred_j_mask * pred
iou = compute_iou(pred_j, label_i, zero)
ious[i - 1, j - 1] = iou
if iou != 0:
pair_conn += iou
pair_conn_num += 1
if pair_conn_num != 0:
pair_conn_sum += pair_conn / pair_conn_num
lone_pred_num = 0
pred_sum = paddle.sum(ious, axis=0)
for m in range(0, real_pred_num):
if pred_sum[m] == 0:
lone_pred_num += 1
img_connectivity = pair_conn_sum / (real_label_num + lone_pred_num)
return img_connectivity
def compute_iou(pred_i, label_i, zero):
intersect_area_i = paddle.sum(pred_i * label_i)
if paddle.equal(intersect_area_i, zero):
return 0
pred_area_i = paddle.sum(pred_i)
label_area_i = paddle.sum(label_i)
union_area_i = pred_area_i + label_area_i - intersect_area_i
if paddle.equal(union_area_i, zero):
return 1
else:
return intersect_area_i / union_area_i