-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_joint_training.py
96 lines (80 loc) · 4.43 KB
/
main_joint_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""""""""""""""""""""""""""""""""""""""""""""""""""""
Multiple Instance Class-Incremental Learning (MICIL)
"""""""""""""""""""""""""""""""""""""""""""""""""""""
import argparse
import numpy as np
import torch
from sklearn.utils.class_weight import compute_class_weight
from code_py.utils_MICIL import plot_training, load_data, set_random_seeds
from code_py.utils_MIL_models import TransMIL
def process(args):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model_path = './local_data/models/model_' + args.name_experiment + '.pth'
""" Data loading """
scenario = 'joint/'
train_dg = load_data(csv_file = scenario + '2_4_0_5_3_1_train')
valid_dg = load_data(csv_file = scenario + '2_4_0_5_3_1_val')
""" Variable initialization """
best_val_acc = 0.0
n_classes = len(np.unique(train_dg.targets)) # Number of classes
train_acc_epoch, train_loss_epoch = [], [] # Training loss & accuracy per epoch
val_acc_epoch, val_loss_epoch = [], [] # Validation loss & accuracy per epoch
""" Training configuration """
model = TransMIL(n_classes=n_classes).to(device) # TransMIL
optimizer = torch.optim.Adam(model.parameters(), lr = args.lr) # Adam optimizer
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=args.gamma) # Exponential LR decay
class_weights = compute_class_weight('balanced', classes=np.unique(train_dg.targets), y=train_dg.targets)
weights = torch.tensor(class_weights, dtype=torch.float).data.cuda() # Class weights
criterion = torch.nn.CrossEntropyLoss(weight=weights, reduction="sum") # Weighted CE loss
""" Training loop """
print(f'----- Joint Training -----')
for ep in range(args.epochs):
# Training loop
run_loss_train, run_acc_train = 0.0, 0.0
model.train()
for it, (train_mb_x, train_mb_y) in enumerate(train_dg):
optimizer.zero_grad()
train_logits = model(train_mb_x)[0] # Training Forward
loss_ce = criterion(train_logits, train_mb_y) # WCE Loss
loss_ce.backward() # Training Backward
optimizer.step() # Update
run_loss_train += loss_ce.item() # Training loss
run_acc_train += train_mb_y.eq(torch.argmax(torch.softmax(train_logits, dim=1), dim=1)).item() # Training Accuracy
scheduler.step()
N = len(train_dg)
train_loss_epoch.append(run_loss_train / N) # Keep batch size = 1
train_acc_epoch.append(run_acc_train / N)
# Validation loop
model.eval()
run_val_loss, run_val_acc = 0.0, 0.0
with torch.no_grad():
for it, (val_mb_x, val_mb_y) in enumerate(valid_dg):
val_logits = model(val_mb_x)[0] # Validation Forward
run_val_loss += criterion(val_logits, val_mb_y).item() # Validation Loss
run_val_acc += val_mb_y.eq(torch.argmax(torch.softmax(val_logits, dim=1), dim=1)).item() # Validation Accuracy
N = len(valid_dg)
val_loss_epoch.append(run_val_loss / N)
val_acc_epoch.append(run_val_acc / N)
# Monitor loss and accuracy during training in every epoch
print('-----------------------------------------------------------------')
print(f'Epoch {ep+1} \t Training Loss = {train_loss_epoch[ep]:.4f} \t Validation Loss = {val_loss_epoch[ep]:.4f}')
print(f' \t Training Acc = {train_acc_epoch[ep]:.4f} \t Validation Acc = {val_acc_epoch[ep]:.4f}')
print('-----------------------------------------------------------------')
# Save best model
best_acc_ep = val_acc_epoch[ep]
if best_acc_ep > best_val_acc:
best_val_acc = best_acc_ep
torch.save(model.state_dict(), model_path)
""" Plot results after each experience """
train_metrics = [val_loss_epoch, train_loss_epoch, val_acc_epoch, train_acc_epoch]
plot_training(metrics = train_metrics, fig_name = args.name_experiment)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Experiment identifier
parser.add_argument("--name_experiment", type=str, default="AI4SKIN_JointTraining")
# Training options
parser.add_argument('--lr', default=1e-5, type=float, help='Learning rate')
parser.add_argument('--epochs', default=5, type=int, help='Training epochs')
parser.add_argument('--gamma', default=0.9, type=float, help='Gamma for exponential weight decay')
args = parser.parse_args()
process(args=args)