7
7
[ ![ fair-software.eu] ( https://img.shields.io/badge/fair--software.eu-%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8B-yellow )] ( https://fair-software.eu )
8
8
[ ![ Downloads] ( https://cranlogs.r-pkg.org/badges/kinematics )] ( https://cran.r-project.org/web/packages/kinematics/index.html )
9
9
10
- # Kinematics <img src =" inst/img /logo.png" width =" 120 " align =" right " />
10
+ # Kinematics <img src =" man/figures /logo.png" width =" 120 " align =" right " />
11
11
12
12
Allows analyzing time series representing two-dimensional movements.
13
13
It accepts a data frame with a time (t), horizontal (x) and vertical (y)
@@ -140,7 +140,7 @@ that represents five steps of what seems to be a parabolic movement:
140
140
plot(mov $ x , mov $ y , xlab = " x" , ylab = " y" )
141
141
```
142
142
143
- ![ ] ( inst/img /parabolic-plot-1.png)
143
+ ![ ] ( man/figures /parabolic-plot-1.png)
144
144
145
145
Notice that the insides of the data frame look like below:
146
146
@@ -218,7 +218,7 @@ ggplot(data = mov_analyzed,
218
218
scale_color_gradient(low = " blue" , high = " red" )
219
219
```
220
220
221
- ![ ] ( inst/img /ggplot-1.png)
221
+ ![ ] ( man/figures /ggplot-1.png)
222
222
223
223
## More realistic examples
224
224
@@ -259,7 +259,7 @@ The data looks like this:
259
259
plot(mov $ x , mov $ y , xlab = " x" , ylab = " y" , asp = 1 )
260
260
```
261
261
262
- ![ ] ( inst/img /spiral-plot-1.png)
262
+ ![ ] ( man/figures /spiral-plot-1.png)
263
263
264
264
And repeating the analysis shown in the previous example, we can
265
265
significantly enrich the features we can see on the data. For instance,
@@ -276,7 +276,7 @@ ggplot(data = mov_analyzed,
276
276
scale_color_gradient(low = " blue" , high = " red" )
277
277
```
278
278
279
- ![ ] ( inst/img /spiral-ggplot-1.png)
279
+ ![ ] ( man/figures /spiral-ggplot-1.png)
280
280
281
281
### Sampled curve
282
282
@@ -299,7 +299,7 @@ mov <- kinematics::example_mov
299
299
300
300
plot(mov $ x , mov $ y , xlab = " x" , ylab = " y" , asp = 1 )
301
301
```
302
- ![ ] ( inst/img /load-data-1.png)
302
+ ![ ] ( man/figures /load-data-1.png)
303
303
304
304
Using ` append_dynamics ` we can extract a lot of significant information:
305
305
And this is an example of how our analysis enriches the information
@@ -319,7 +319,7 @@ ggplot(data = mov_analyzed,
319
319
scale_color_gradient(low = " blue" , high = " red" )
320
320
```
321
321
322
- ![ ] ( inst/img /plot-data-1.png)
322
+ ![ ] ( man/figures /plot-data-1.png)
323
323
324
324
Or a histogram about accelerations:
325
325
@@ -330,7 +330,7 @@ hist(mov_analyzed$aaccel,
330
330
main = ' Acceleration histogram' )
331
331
```
332
332
333
- ![ ] ( inst/img /hist-data-1.png)
333
+ ![ ] ( man/figures /hist-data-1.png)
334
334
335
335
## Citation
336
336
0 commit comments