generated from PNNL-CompBio/p3
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathselected_mutations_GSEA_KSEA.Rmd
340 lines (243 loc) · 10.4 KB
/
selected_mutations_GSEA_KSEA.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
---
title: "Mutational analysis: GSEA and KSEA"
author: "Camilo Posso"
date: "02/16/2022"
output:
html_document:
code_folding: hide
toc: true
editor_options:
chunk_output_type: inline
---
## Goal
The goal of this markdown is to make the GSEA and KSEA plots comparing mutated to non mutated
samples for various selected mutations.
```{r include=FALSE}
library(clusterProfiler)
library(dplyr)
library(ggplot2)
library(kableExtra)
source("../util/synapseUtil.R")
source("../util/loading_data.R")
source("../util/mutational_analysis_helper.R")
source("../util/make_plots_util.R")
load("../Misc/load.combined.data 3-09-2022.RData")
# load.combined.data()
metadata <- load.metadata()
samples <- global.data %>%
pull(Barcode.ID) %>% unique()
total_mutations <- WES.data %>%
pull(Gene) %>% unique()
all_mutation_data <- load_mutational_sample_data()
IDH1_IDH2 <- "IDH1+IDH2"
KRAS_NRAS <- "KRAS+NRAS"
```
```{r}
## Mutations with at least 4 patients having said mutation
WES_reduced <- WES.data %>%
filter(Barcode.ID %in% samples) %>%
group_by(Barcode.ID, Gene) %>%
dplyr::slice(1) %>%
ungroup(Barcode.ID, Gene)
mutation_count <- WES_reduced %>%
group_by(Gene) %>%
summarise(n = n())
mutations <- mutation_count %>%
filter(n > 3) %>%
pull(Gene)
WES_samples <- WES_reduced %>%
group_by(Gene) %>%
mutate(n = n()) %>%
arrange(-n) %>%
pull(Barcode.ID) %>%
unique()
WES_reduced <- WES_reduced %>%
mutate(value = 1) %>%
dplyr::select(Barcode.ID, Gene, value)
m.WES <- make.msnset(WES_reduced, "Gene", "Barcode.ID", "value", meta)
mat <- exprs(m.WES)[, WES_samples]
mat[is.na(mat)] <- 0
```
Of the `r length(total_mutations)` mutations recorded in at least one sample, `r length(mutations)`
of them are present in at least 4 samples. Below we summarize the mutational data for these
`r length(mutations)` mutations using a heatmap. Note the columns represent samples, while the
light beige color denotes mutation.
```{r}
pheatmap(mat[mutations, ], color = c("#16182A", "#F5E9D9"),
legend = FALSE, show_colnames = FALSE)
```
```{r include=FALSE}
## Here we run differential expression for convenience (to not rewrite code),
## in the end we are only interested in the log fold changes for the rank based GSEA
m.RNA <- make.msnset(RNA.data, feature.col = "Gene",
value.col = "RNA counts", metadata = meta)
m.global <- make.msnset(global.data, feature.col = "Gene",
value.col = "LogRatio", metadata = meta)
m.phospho <- make.msnset(phospho.data, feature.col = "SiteID",
value.col = "LogRatio", metadata = meta)
datasets <- list(m.global, m.phospho, m.RNA)
names(datasets) <- c("global", "phospho", "RNA")
mutations <- c(mutations, c(IDH1_IDH2, KRAS_NRAS, "NPM1_clinical", "FLT3.ITD"))
## NPM1 mutations are made from clinical summary data used instead of the WES data
## so we remove NPM1 here
NPM1_WES_index <- which(mutations == "NPM1")
mutations <- mutations[-NPM1_WES_index]
differential_expression_results <- lapply(mutations, check_diff_exp_individual,
all_mutation_data, datasets)
summary_table <- lapply(differential_expression_results, function(xx){xx[[1]]}) %>%
do.call("rbind", .)
names(differential_expression_results) = sapply(differential_expression_results, function(xx){
xx[[1]]$mutation[[1]]
})
```
```{r}
library(clusterProfiler)
library(msigdbr)
t2g_hallmark <- msigdbr(species = "Homo sapiens", category = "H") %>%
dplyr::select(gs_name, gene_symbol)
## 50 unique terms
# unique(t2g_hallmark$gs_name)
t2g_oncogenic <- msigdbr(species = "Homo sapiens", category = "C6") %>%
dplyr::select(gs_name, gene_symbol)
## 189 unique terms
# unique(t2g_oncogenic$gs_name)
t2g_gobp <- msigdbr(species = "Homo sapiens", category = "C5", subcategory = "BP") %>%
dplyr::select(gs_name, gene_symbol) %>%
mutate(gs_name = gsub("_", " ", gs_name))
```
```{r, rank based gsea}
library(org.Hs.eg.db)
library(KSEAapp)
selected_mutations <- c("IDH1", "IDH2", "TP53", "NRAS", "KRAS", "FLT3.ITD", "NPM1_clinical",
IDH1_IDH2, KRAS_NRAS)
### KSEA pathway table
KSDB <- read.csv(system.file('PSP&NetworKIN_Kinase_Substrate_Dataset_July2016.csv',
package='amlresistancenetworks'),stringsAsFactors = FALSE)
gsea_rank_results <- lapply(selected_mutations, function(mutation){
print(mutation)
## logFC in the differential expression table is calculated as follows:
## mean(mutated) - mean(non mutated)
diff_exp <- differential_expression_results[[mutation]][[2]] %>%
filter(datatype == "global") %>%
arrange(-logFC)
gene_list <- diff_exp$logFC
names(gene_list) <- diff_exp$feature
gsea_global_gobp <- GSEA(geneList = gene_list, eps = 1e-30,
minGSSize = 10, pvalueCutoff = 0.05, TERM2GENE = t2g_gobp)@result %>%
compress_enrichment(colname = "p.adjust", descending = FALSE) %>%
dplyr::select(Description, setSize, p.adjust, NES) %>%
dplyr::rename(pathway = Description, enrichment = NES,
adj_p_val = p.adjust, set_size = setSize) %>%
dplyr::mutate(data_type = "global",
mutation = mutation,
DB = "GO_BP")
gsea_global_hallmark <- GSEA(geneList = gene_list, eps = 1e-30,
minGSSize = 10, pvalueCutoff = 0.05, TERM2GENE = t2g_hallmark)@result %>%
dplyr::select(Description, setSize, p.adjust, NES) %>%
dplyr::rename(pathway = Description, enrichment = NES,
adj_p_val = p.adjust, set_size = setSize) %>%
dplyr::mutate(data_type = "global",
mutation = mutation,
DB = "hallmark")
gsea_global_oncogenic <- GSEA(geneList = gene_list, eps = 1e-30,
minGSSize = 10, pvalueCutoff = 0.05, TERM2GENE = t2g_oncogenic)@result %>%
dplyr::select(Description, setSize, p.adjust, NES) %>%
dplyr::rename(pathway = Description, enrichment = NES,
adj_p_val = p.adjust, set_size = setSize) %>%
dplyr::mutate(data_type = "global",
mutation = mutation,
DB = "oncogenic")
gsea_global <- rbind(gsea_global_gobp, gsea_global_hallmark, gsea_global_oncogenic)
diff_exp <- differential_expression_results[[mutation]][[2]] %>%
filter(datatype == "RNA") %>%
arrange(-logFC)
gene_list <- diff_exp$logFC
names(gene_list) <- diff_exp$feature
gsea_rna_gobp <- GSEA(geneList = gene_list, eps = 1e-30,
minGSSize = 10, pvalueCutoff = 0.05, TERM2GENE = t2g_gobp)@result %>%
compress_enrichment(colname = "p.adjust", descending = FALSE) %>%
dplyr::select(Description, setSize, p.adjust, NES) %>%
dplyr::rename(pathway = Description, enrichment = NES,
adj_p_val = p.adjust, set_size = setSize) %>%
dplyr::mutate(data_type = "RNA",
mutation = mutation,
DB = "GO_BP")
gsea_rna_hallmark <- GSEA(geneList = gene_list, eps = 1e-30,
minGSSize = 10, pvalueCutoff = 0.05, TERM2GENE = t2g_hallmark)@result %>%
dplyr::select(Description, setSize, p.adjust, NES) %>%
dplyr::rename(pathway = Description, enrichment = NES,
adj_p_val = p.adjust, set_size = setSize) %>%
dplyr::mutate(data_type = "RNA",
mutation = mutation,
DB = "hallmark")
gsea_rna_oncogenic <- GSEA(geneList = gene_list, eps = 1e-30,
minGSSize = 10, pvalueCutoff = 0.05, TERM2GENE = t2g_oncogenic)@result %>%
dplyr::select(Description, setSize, p.adjust, NES) %>%
dplyr::rename(pathway = Description, enrichment = NES,
adj_p_val = p.adjust, set_size = setSize) %>%
dplyr::mutate(data_type = "RNA",
mutation = mutation,
DB = "oncogenic")
gsea_rna <- rbind(gsea_rna_gobp, gsea_rna_hallmark, gsea_rna_oncogenic)
diff_exp <- differential_expression_results[[mutation]][[2]] %>%
filter(datatype == "phospho") %>%
arrange(-logFC) %>%
## Making the necessary columns for KSEA
mutate(Gene = sub("-.*$", "", feature),
Residue.Both = sub("^.*-", "", feature)) %>%
mutate(Residue.Both = gsub("[a-z]", ";", Residue.Both)) %>%
mutate(Residue.Both = sub(";$", "", Residue.Both))
PX <- data.frame(Protein = "NULL", Gene = diff_exp$Gene,
Peptide = "NULL", Residue.Both = diff_exp$Residue.Both,
p = "NULL", FC = diff_exp$logFC)
ksea_phospho <- KSEA.Scores(KSDB, PX, NetworKIN = TRUE, NetworKIN.cutoff = 5) %>%
dplyr::select(Kinase.Gene, m, FDR, z.score) %>%
dplyr::rename(pathway = Kinase.Gene, enrichment = z.score,
adj_p_val = FDR, set_size = m) %>%
dplyr::mutate(data_type = "phospho",
mutation = mutation,
DB = "KSDB") %>%
filter(set_size > 3)
gsea_all <- rbind(gsea_global, gsea_rna, ksea_phospho)
return(gsea_all)
})
gsea_rank_results_df <- do.call("rbind", gsea_rank_results)
write.table(gsea_rank_results_df, "raw_tables/mutation_analysis_GSEA_KSEA_results_combined.txt", sep = "\t", quote = F)
# upload.plot("raw_tables/mutation_analysis_rank_GSEA_KSEA_combined.txt", parentId = "syn27220699")
```
```{r}
to_plot <- gsea_rank_results_df %>%
filter(adj_p_val < 0.05)
categories_plot <- to_plot %>%
dplyr::select(mutation, data_type, DB) %>%
unique()
rownames(categories_plot) <- 1:nrow(categories_plot)
lapply(1:nrow(categories_plot), function(i){
plot_mutation <- categories_plot$mutation[[i]]
plot_data_type <- categories_plot$data_type[[i]]
plot_DB <- categories_plot$DB[[i]]
if (plot_data_type %in% c("global", "RNA")){
x_label <- "NES"
plot_title <- paste(plot_DB, plot_mutation, "GSEA in", plot_data_type)
} else {
x_label <- "z-score"
plot_title <- paste(plot_DB, plot_mutation, "KSEA in", plot_data_type)
}
plot_path <- "./plots/gsea_rank_analysis/G(K)SEA"
plot_path <- paste(plot_path, plot_DB, plot_mutation, plot_data_type, sep = "_") %>%
paste0(".png")
plot_df <- to_plot %>%
filter(mutation == plot_mutation) %>%
filter(data_type == plot_data_type) %>%
filter(DB == plot_DB) %>%
dplyr::select(pathway, enrichment, adj_p_val) %>%
head(20)
png(file = plot_path, width = 1200, height = 800)
plot_enrichment_result(plot_df, x_label, enrichment_title = plot_title)
dev.off()
upload.plot(plot_path, parentId = "syn27220699")
"done"
})
```
```{r}
```