-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
310 lines (255 loc) · 12.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# Copyright (c) Microsoft Corporation.
# Modifications Copyright (c) 2024 Pin-Yen Huang.
# Licensed under the MIT License.
import os
import random
import logging
import warnings
import argparse
import numpy as np
import torch
import torch.nn.parallel
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.backends.cudnn as cudnn
from semilearn.algorithms import get_algorithm, name2alg
from semilearn.algorithms.utils import str2bool
from semilearn.core.utils import (
TBLog,
count_parameters,
get_logger,
get_net_builder,
get_port,
over_write_args_from_file,
send_model_cuda,
)
# custom function to prettify warning messages
def custom_warning_format(message, category, filename, lineno, line=None):
return f"\033[93m[{category.__name__}] \033[0m({filename}:{lineno}): {message}\n"
warnings.formatwarning = custom_warning_format
def get_config():
parser = argparse.ArgumentParser(description="Semi-Supervised Regression (SSR)")
"""
Saving & Loading of the Model.
"""
parser.add_argument("--save_dir", type=str, default="./saved_models")
parser.add_argument("-sn", "--save_name", type=str, default="rankup")
parser.add_argument("--resume", action="store_true")
parser.add_argument("--load_path", type=str)
parser.add_argument("-o", "--overwrite", action="store_true")
parser.add_argument("--use_tensorboard", action="store_true", help="Use tensorboard to plot and save curves")
parser.add_argument("--use_wandb", action="store_true", help="Use wandb to plot and save curves")
parser.add_argument("--use_aim", action="store_true", help="Use aim to plot and save curves")
"""
Training Configuration
"""
parser.add_argument("--epoch", type=int, default=1)
parser.add_argument("--num_train_iter", type=int, default=20, help="Total number of training iterations")
parser.add_argument("--num_warmup_iter", type=int, default=0, help="Cosine linear warmup iterations")
parser.add_argument("--num_eval_iter", type=int, default=10, help="Evaluation frequency")
parser.add_argument("--num_log_iter", type=int, default=5, help="Logging frequency")
parser.add_argument("-nl", "--num_labels", type=int, default=250)
parser.add_argument("-unl", "--ulb_num_labels", type=int, default=None, help="Number of labels for unlabeled data")
parser.add_argument("-bsz", "--batch_size", type=int, default=8)
parser.add_argument("--uratio", type=float, default=1.0, help="Ratio of unlabeled data to labeled data in each mini-batch")
parser.add_argument("--eval_batch_size", type=int, default=16, help="Evaluation batch size")
parser.add_argument("--ema_m", type=float, default=0.999, help="EMA momentum for eval_model")
parser.add_argument("--criterion", type=str, default="l1", choices=["l1", "mse"])
parser.add_argument("--ulb_loss_ratio", type=float, default=1.0)
"""
Optimizer Configurations
"""
parser.add_argument("--optim", type=str, default="SGD")
parser.add_argument("--lr", type=float, default=3e-2)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--weight_decay", type=float, default=5e-4)
parser.add_argument("--layer_decay", type=float, default=1.0, help="Layer-wise learning rate decay")
"""
Backbone Net Configurations
"""
parser.add_argument("--net", type=str, default="wrn_28_2")
parser.add_argument("--net_from_name", type=str2bool, default=False)
parser.add_argument("--use_pretrain", type=str2bool, default=False)
parser.add_argument("--pretrain_path", type=str, default=None)
"""
Algorithms Configurations
"""
## core algorithm setting
parser.add_argument("-alg", "--algorithm", type=str, default="supervised", help="Semi-supervised regression algorithm")
parser.add_argument("--use_cat", type=str2bool, default=True, help="Use cat operation in algorithms")
parser.add_argument("--amp", type=str2bool, default=False, help="Use mixed precision training")
parser.add_argument("--clip_grad", type=float, default=0)
"""
Data Configurations
"""
## standard setting configurations
parser.add_argument("--data_dir", type=str, default="./data")
parser.add_argument("-ds", "--dataset", type=str, default="utkface")
parser.add_argument("--preload", type=str2bool, default=False)
parser.add_argument("--train_sampler", type=str, default="RandomSampler")
parser.add_argument("--num_workers", type=int, default=1)
parser.add_argument("--include_lb_to_ulb", type=str2bool, default="True", help="Include labeled data into unlabeled data")
## cv dataset arguments
parser.add_argument("--img_size", type=int, default=32)
parser.add_argument("--crop_ratio", type=float, default=0.875)
## nlp dataset arguments
parser.add_argument("--max_length", type=int, default=512)
## speech dataset algorithms
parser.add_argument("--max_length_seconds", type=float, default=4.0)
parser.add_argument("--sample_rate", type=int, default=16000)
"""
Multi-GPUs & Distributed Training
"""
## args for distributed training (from https://github.com/pytorch/examples/blob/master/imagenet/main.py) # noqa: E501
parser.add_argument("--world-size", type=int, default=1, help="Number of nodes for distributed training")
parser.add_argument("--rank", type=int, default=0, help="Node rank for distributed training")
parser.add_argument("-du", "--dist-url", type=str, default="tcp://127.0.0.1:11111", help="URL for distributed training")
parser.add_argument("--dist-backend", type=str, default="nccl", help="Distributed backend")
parser.add_argument("--seed", type=int, default=1, help="Seed for initializing training. ")
parser.add_argument("--gpu", type=int, default=None, help="GPU ID to use.")
parser.add_argument(
"--multiprocessing-distributed",
type=str2bool,
default=False,
help="Use multi-processing distributed training to launch "
"N processes per node, which has N GPUs. This is the "
"fastest way to use PyTorch for either single node or "
"multi node data parallel training",
)
# config file
parser.add_argument("--c", type=str, default="")
args = parser.parse_args()
over_write_args_from_file(args, args.c)
# add regression algorithm specific parameters
for argument in name2alg[args.algorithm].get_argument():
parser.add_argument(
argument.name,
type=argument.type,
default=argument.default,
help=argument.help,
)
args = parser.parse_args()
over_write_args_from_file(args, args.c)
return args
def main(args):
"""
For (Distributed)DataParallelism,
main(args) spawns each process (main_worker) to each GPU.
"""
assert (
args.num_train_iter % args.epoch == 0
), f"# total training iterations {args.num_train_iter} must be divisible by number of epochs {args.epoch}"
save_path = os.path.join(args.save_dir, args.save_name)
# handle model saving and overwriting logic
if os.path.exists(save_path):
if args.overwrite and not args.resume:
import shutil
shutil.rmtree(save_path)
elif not args.overwrite:
raise FileExistsError(f"Model already exists at {save_path}. Use --overwrite to replace it.")
# handle resuming logic
if args.resume:
if not args.load_path:
raise ValueError("Resuming training requires --load_path.")
if os.path.abspath(save_path) == os.path.abspath(args.load_path) and not args.overwrite:
raise ValueError("Saving and loading paths are the same. Use --overwrite to continue.")
# seed warning
if args.seed is not None:
warnings.warn(
"You have chosen to seed training. "
"This will turn on the CUDNN deterministic setting, but may slow down performance. "
"Unexpected behavior could occur when restarting from checkpoints."
)
# GPU configuration
if args.gpu == "None":
args.gpu = None
if args.gpu is not None:
warnings.warn("You have selected a specific GPU. Data parallelism will be disabled.")
# determine distributed setup
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
# distributed: true if manually selected or if world_size > 1
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count() # number of gpus of each node
if args.multiprocessing_distributed:
# now, args.world_size means num of total processes in all nodes
args.world_size = ngpus_per_node * args.world_size
# args=(,) means the arguments of main_worker
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
"""
main_worker is conducted on each GPU for distributed training.
"""
# assign the current GPU
args.gpu = gpu
# random seed has to be set for the synchronization of labeled data sampling in each process.
assert args.seed is not None, "Seed must be provided for synchronization."
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
cudnn.deterministic = True
cudnn.benchmark = True
# setup for distributed training
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
args.rank = args.rank * ngpus_per_node + gpu # compute global rank
# initialize the process group for distributed training
dist.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
# set save path and logger
save_path = os.path.join(args.save_dir, args.save_name)
logger_level = "WARNING"
tb_log = None
# set up tensorboard logging only for the primary GPU (rank 0)
if args.rank % ngpus_per_node == 0:
tb_log = TBLog(save_path, "tensorboard", use_tensorboard=args.use_tensorboard)
logger_level = "INFO"
logger = get_logger(args.save_name, save_path, logger_level)
logger.info(f"Using GPU: {args.gpu} for training")
# build the network and set up the algorithm (RankUp, etc.)
_net_builder = get_net_builder(args.net, args.net_from_name)
model = get_algorithm(args, _net_builder, tb_log, logger)
logger.info(f"Number of Trainable Parameters: {count_parameters(model.model)}")
# send the model and EMA model (if applicable) to the GPU
model.model = send_model_cuda(args, model.model)
model.ema_model = send_model_cuda(args, model.ema_model, clip_batch=False)
logger.info(f"Training Arguments: {model.args}")
# if args.resume, load checkpoints from args.load_path
if args.resume and os.path.exists(args.load_path):
try:
model.load_model(args.load_path)
logger.info(f"Resumed training from {args.load_path}")
except Exception as e:
logger.error(f"Failed to resume load path {args.load_path}. Error: {e}")
args.resume = False
else:
logger.info(f"Checkpoint path {args.load_path} does not exist. Starting fresh.")
# warmup stage if the model supports it
if hasattr(model, "warmup"):
logger.info("Starting warmup stage")
model.warmup()
# start the main training loop
logger.info("Starting model training")
model.train()
# print validation (and test results)
for key, item in model.results_dict.items():
logger.info(f"Model result - {key} : {item}")
# finetuning stage if the model has it
if hasattr(model, "finetune"):
logger.info("Starting finetuning stage")
model.finetune()
# training completion notification
logging.warning(f"Training on GPU {args.rank} is finished")
if __name__ == "__main__":
args = get_config()
port = get_port()
args.dist_url = "tcp://127.0.0.1:" + str(port)
main(args)