forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathga-faster-rcnn_r50_fpn_1x_coco.py
64 lines (64 loc) · 2.32 KB
/
ga-faster-rcnn_r50_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
_base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
model = dict(
rpn_head=dict(
_delete_=True,
type='GARPNHead',
in_channels=256,
feat_channels=256,
approx_anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=8,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
square_anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
scales=[8],
strides=[4, 8, 16, 32, 64]),
anchor_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[0.07, 0.07, 0.14, 0.14]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[0.07, 0.07, 0.11, 0.11]),
loc_filter_thr=0.01,
loss_loc=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
roi_head=dict(
bbox_head=dict(bbox_coder=dict(target_stds=[0.05, 0.05, 0.1, 0.1]))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
ga_assigner=dict(
type='ApproxMaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
ga_sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
center_ratio=0.2,
ignore_ratio=0.5),
rpn_proposal=dict(nms_post=1000, max_per_img=300),
rcnn=dict(
assigner=dict(pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6),
sampler=dict(type='RandomSampler', num=256))),
test_cfg=dict(
rpn=dict(nms_post=1000, max_per_img=300), rcnn=dict(score_thr=1e-3)))
optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))