-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
162 lines (130 loc) · 5.19 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch.nn as nn
import torchsparse.nn as spnn
from torchsparse.point_tensor import PointTensor
from AdelaiDepth.LeReS.lib.spvcnn_utils import *
__all__ = ['SPVCNN_CLASSIFICATION']
class BasicConvolutionBlock(nn.Module):
def __init__(self, inc, outc, ks=3, stride=1, dilation=1):
super().__init__()
self.net = nn.Sequential(
spnn.Conv3d(inc,
outc,
kernel_size=ks,
dilation=dilation,
stride=stride),
spnn.BatchNorm(outc),
spnn.ReLU(True))
def forward(self, x):
out = self.net(x)
return out
class BasicDeconvolutionBlock(nn.Module):
def __init__(self, inc, outc, ks=3, stride=1):
super().__init__()
self.net = nn.Sequential(
spnn.Conv3d(inc,
outc,
kernel_size=ks,
stride=stride,
transpose=True),
spnn.BatchNorm(outc),
spnn.ReLU(True))
def forward(self, x):
return self.net(x)
class ResidualBlock(nn.Module):
def __init__(self, inc, outc, ks=3, stride=1, dilation=1):
super().__init__()
self.net = nn.Sequential(
spnn.Conv3d(inc,
outc,
kernel_size=ks,
dilation=dilation,
stride=stride), spnn.BatchNorm(outc),
spnn.ReLU(True),
spnn.Conv3d(outc,
outc,
kernel_size=ks,
dilation=dilation,
stride=1),
spnn.BatchNorm(outc)
)
self.downsample = nn.Sequential() if (inc == outc and stride == 1) else \
nn.Sequential(
spnn.Conv3d(inc, outc, kernel_size=1, dilation=1, stride=stride),
spnn.BatchNorm(outc)
)
self.relu = spnn.ReLU(True)
def forward(self, x):
out = self.relu(self.net(x) + self.downsample(x))
return out
class SPVCNN_CLASSIFICATION(nn.Module):
def __init__(self, **kwargs):
super().__init__()
cr = kwargs.get('cr', 1.0)
cs = [32, 32, 64, 128, 256, 256, 128, 96, 96]
cs = [int(cr * x) for x in cs]
if 'pres' in kwargs and 'vres' in kwargs:
self.pres = kwargs['pres']
self.vres = kwargs['vres']
self.stem = nn.Sequential(
spnn.Conv3d(kwargs['input_channel'], cs[0], kernel_size=3, stride=1),
spnn.BatchNorm(cs[0]),
spnn.ReLU(True),
spnn.Conv3d(cs[0], cs[0], kernel_size=3, stride=1),
spnn.BatchNorm(cs[0]),
spnn.ReLU(True))
self.stage1 = nn.Sequential(
BasicConvolutionBlock(cs[0], cs[0], ks=2, stride=2, dilation=1),
ResidualBlock(cs[0], cs[1], ks=3, stride=1, dilation=1),
ResidualBlock(cs[1], cs[1], ks=3, stride=1, dilation=1),
)
self.stage2 = nn.Sequential(
BasicConvolutionBlock(cs[1], cs[1], ks=2, stride=2, dilation=1),
ResidualBlock(cs[1], cs[2], ks=3, stride=1, dilation=1),
ResidualBlock(cs[2], cs[2], ks=3, stride=1, dilation=1),
)
self.stage3 = nn.Sequential(
BasicConvolutionBlock(cs[2], cs[2], ks=2, stride=2, dilation=1),
ResidualBlock(cs[2], cs[3], ks=3, stride=1, dilation=1),
ResidualBlock(cs[3], cs[3], ks=3, stride=1, dilation=1),
)
self.stage4 = nn.Sequential(
BasicConvolutionBlock(cs[3], cs[3], ks=2, stride=2, dilation=1),
ResidualBlock(cs[3], cs[4], ks=3, stride=1, dilation=1),
ResidualBlock(cs[4], cs[4], ks=3, stride=1, dilation=1),
)
self.avg_pool = spnn.GlobalAveragePooling()
self.classifier = nn.Sequential(nn.Linear(cs[4], kwargs['num_classes']))
self.point_transforms = nn.ModuleList([
nn.Sequential(
nn.Linear(cs[0], cs[4]),
nn.BatchNorm1d(cs[4]),
nn.ReLU(True),
),
])
self.weight_initialization()
self.dropout = nn.Dropout(0.3, True)
def weight_initialization(self):
for m in self.modules():
if isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
# x: SparseTensor z: PointTensor
z = PointTensor(x.F, x.C.float())
x0 = initial_voxelize(z, self.pres, self.vres)
x0 = self.stem(x0)
z0 = voxel_to_point(x0, z, nearest=False)
z0.F = z0.F
x1 = point_to_voxel(x0, z0)
x1 = self.stage1(x1)
x2 = self.stage2(x1)
x3 = self.stage3(x2)
x4 = self.stage4(x3)
z1 = voxel_to_point(x4, z0)
z1.F = z1.F + self.point_transforms[0](z0.F)
y1 = point_to_voxel(x4, z1)
pool = self.avg_pool(y1)
# TODO!
pool = self.dropout(pool)
out = self.classifier(pool)
return out