This repository has been archived by the owner on Mar 2, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 164
/
openvino_yolov3_MultiStick_test.py
397 lines (326 loc) · 14.2 KB
/
openvino_yolov3_MultiStick_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import sys, os, cv2, time, heapq, argparse
import numpy as np, math
try:
from armv7l.openvino.inference_engine import IENetwork, IEPlugin
except:
from openvino.inference_engine import IENetwork, IEPlugin
import multiprocessing as mp
from time import sleep
import threading
yolo_scale_13 = 13
yolo_scale_26 = 26
yolo_scale_52 = 52
classes = 80
coords = 4
num = 3
anchors = [10,13,16,30,33,23,30,61,62,45,59,119,116,90,156,198,373,326]
LABELS = ("person", "bicycle", "car", "motorbike", "aeroplane",
"bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird",
"cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack",
"umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard","tennis racket", "bottle",
"wine glass", "cup", "fork", "knife", "spoon",
"bowl", "banana", "apple", "sandwich", "orange",
"broccoli", "carrot", "hot dog", "pizza", "donut",
"cake", "chair", "sofa", "pottedplant", "bed",
"diningtable", "toilet", "tvmonitor", "laptop", "mouse",
"remote", "keyboard", "cell phone", "microwave", "oven",
"toaster", "sink", "refrigerator", "book", "clock",
"vase", "scissors", "teddy bear", "hair drier", "toothbrush")
label_text_color = (255, 255, 255)
label_background_color = (125, 175, 75)
box_color = (255, 128, 0)
box_thickness = 1
processes = []
fps = ""
detectfps = ""
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
lastresults = None
def EntryIndex(side, lcoords, lclasses, location, entry):
n = int(location / (side * side))
loc = location % (side * side)
return int(n * side * side * (lcoords + lclasses + 1) + entry * side * side + loc)
class DetectionObject():
xmin = 0
ymin = 0
xmax = 0
ymax = 0
class_id = 0
confidence = 0.0
def __init__(self, x, y, h, w, class_id, confidence, h_scale, w_scale):
self.xmin = int((x - w / 2) * w_scale)
self.ymin = int((y - h / 2) * h_scale)
self.xmax = int(self.xmin + w * w_scale)
self.ymax = int(self.ymin + h * h_scale)
self.class_id = class_id
self.confidence = confidence
def IntersectionOverUnion(box_1, box_2):
width_of_overlap_area = min(box_1.xmax, box_2.xmax) - max(box_1.xmin, box_2.xmin)
height_of_overlap_area = min(box_1.ymax, box_2.ymax) - max(box_1.ymin, box_2.ymin)
area_of_overlap = 0.0
if (width_of_overlap_area < 0.0 or height_of_overlap_area < 0.0):
area_of_overlap = 0.0
else:
area_of_overlap = width_of_overlap_area * height_of_overlap_area
box_1_area = (box_1.ymax - box_1.ymin) * (box_1.xmax - box_1.xmin)
box_2_area = (box_2.ymax - box_2.ymin) * (box_2.xmax - box_2.xmin)
area_of_union = box_1_area + box_2_area - area_of_overlap
retval = 0.0
if area_of_union <= 0.0:
retval = 0.0
else:
retval = (area_of_overlap / area_of_union)
return retval
def ParseYOLOV3Output(blob, resized_im_h, resized_im_w, original_im_h, original_im_w, threshold, objects):
out_blob_h = blob.shape[2]
out_blob_w = blob.shape[3]
side = out_blob_h
anchor_offset = 0
if side == yolo_scale_13:
anchor_offset = 2 * 6
elif side == yolo_scale_26:
anchor_offset = 2 * 3
elif side == yolo_scale_52:
anchor_offset = 2 * 0
side_square = side * side
output_blob = blob.flatten()
for i in range(side_square):
row = int(i / side)
col = int(i % side)
for n in range(num):
obj_index = EntryIndex(side, coords, classes, n * side * side + i, coords)
box_index = EntryIndex(side, coords, classes, n * side * side + i, 0)
scale = output_blob[obj_index]
if (scale < threshold):
continue
x = (col + output_blob[box_index + 0 * side_square]) / side * resized_im_w
y = (row + output_blob[box_index + 1 * side_square]) / side * resized_im_h
height = math.exp(output_blob[box_index + 3 * side_square]) * anchors[anchor_offset + 2 * n + 1]
width = math.exp(output_blob[box_index + 2 * side_square]) * anchors[anchor_offset + 2 * n]
for j in range(classes):
class_index = EntryIndex(side, coords, classes, n * side_square + i, coords + 1 + j)
prob = scale * output_blob[class_index]
if prob < threshold:
continue
obj = DetectionObject(x, y, height, width, j, prob, (original_im_h / resized_im_h), (original_im_w / resized_im_w))
objects.append(obj)
return objects
def camThread(LABELS, results, frameBuffer, camera_width, camera_height, vidfps):
global fps
global detectfps
global lastresults
global framecount
global detectframecount
global time1
global time2
global cam
global window_name
#cam = cv2.VideoCapture(0)
#if cam.isOpened() != True:
# print("USB Camera Open Error!!!")
# sys.exit(0)
#cam.set(cv2.CAP_PROP_FPS, vidfps)
#cam.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
#cam.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
#window_name = "USB Camera"
#wait_key_time = 1
cam = cv2.VideoCapture("data/input/testvideo4.mp4")
camera_width = int(cam.get(cv2.CAP_PROP_FRAME_WIDTH))
camera_height = int(cam.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_count = int(cam.get(cv2.CAP_PROP_FRAME_COUNT))
window_name = "Movie File"
wait_key_time = int(1000 / vidfps)
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
while True:
t1 = time.perf_counter()
# USB Camera Stream Read
s, color_image = cam.read()
if not s:
continue
if frameBuffer.full():
frameBuffer.get()
height = color_image.shape[0]
width = color_image.shape[1]
frameBuffer.put(color_image.copy())
if not results.empty():
objects = results.get(False)
detectframecount += 1
for obj in objects:
if obj.confidence < 0.2:
continue
label = obj.class_id
confidence = obj.confidence
if confidence > 0.2:
label_text = LABELS[label] + " (" + "{:.1f}".format(confidence * 100) + "%)"
cv2.rectangle(color_image, (obj.xmin, obj.ymin), (obj.xmax, obj.ymax), box_color, box_thickness)
cv2.putText(color_image, label_text, (obj.xmin, obj.ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, label_text_color, 1)
lastresults = objects
else:
if not isinstance(lastresults, type(None)):
for obj in lastresults:
if obj.confidence < 0.2:
continue
label = obj.class_id
confidence = obj.confidence
if confidence > 0.2:
label_text = LABELS[label] + " (" + "{:.1f}".format(confidence * 100) + "%)"
cv2.rectangle(color_image, (obj.xmin, obj.ymin), (obj.xmax, obj.ymax), box_color, box_thickness)
cv2.putText(color_image, label_text, (obj.xmin, obj.ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, label_text_color, 1)
cv2.putText(color_image, fps, (width-170,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.putText(color_image, detectfps, (width-170,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.imshow(window_name, cv2.resize(color_image, (width, height)))
if cv2.waitKey(wait_key_time)&0xFF == ord('q'):
sys.exit(0)
## Print FPS
framecount += 1
if framecount >= 15:
fps = "(Playback) {:.1f} FPS".format(time1/15)
detectfps = "(Detection) {:.1f} FPS".format(detectframecount/time2)
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
t2 = time.perf_counter()
elapsedTime = t2-t1
time1 += 1/elapsedTime
time2 += elapsedTime
# l = Search list
# x = Search target value
def searchlist(l, x, notfoundvalue=-1):
if x in l:
return l.index(x)
else:
return notfoundvalue
def async_infer(ncsworker):
ncsworker.skip_frame_measurement()
while True:
ncsworker.predict_async()
class NcsWorker(object):
def __init__(self, devid, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps):
self.devid = devid
self.frameBuffer = frameBuffer
self.model_xml = "./lrmodels/YoloV3/FP16/frozen_yolo_v3.xml"
self.model_bin = "./lrmodels/YoloV3/FP16/frozen_yolo_v3.bin"
self.camera_width = camera_width
self.camera_height = camera_height
self.m_input_size = 416
self.threshould = 0.7
self.num_requests = 4
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.plugin = IEPlugin(device="MYRIAD")
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
self.results = results
self.number_of_ncs = number_of_ncs
self.predict_async_time = 800
self.skip_frame = 0
self.roop_frame = 0
self.vidfps = vidfps
self.new_w = int(camera_width * self.m_input_size/camera_width)
self.new_h = int(camera_height * self.m_input_size/camera_height)
def image_preprocessing(self, color_image):
resized_image = cv2.resize(color_image, (self.new_w, self.new_h), interpolation = cv2.INTER_CUBIC)
canvas = np.full((self.m_input_size, self.m_input_size, 3), 128)
canvas[(self.m_input_size-self.new_h)//2:(self.m_input_size-self.new_h)//2 + self.new_h,(self.m_input_size-self.new_w)//2:(self.m_input_size-self.new_w)//2 + self.new_w, :] = resized_image
prepimg = canvas
prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add
prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW
return prepimg
def skip_frame_measurement(self):
surplustime_per_second = (1000 - self.predict_async_time)
if surplustime_per_second > 0.0:
frame_per_millisecond = (1000 / self.vidfps)
total_skip_frame = surplustime_per_second / frame_per_millisecond
self.skip_frame = int(total_skip_frame / self.num_requests)
else:
self.skip_frame = 0
def predict_async(self):
try:
if self.frameBuffer.empty():
return
self.roop_frame += 1
if self.roop_frame <= self.skip_frame:
self.frameBuffer.get()
return
self.roop_frame = 0
prepimg = self.image_preprocessing(self.frameBuffer.get())
reqnum = searchlist(self.inferred_request, 0)
if reqnum > -1:
self.exec_net.start_async(request_id=reqnum, inputs={self.input_blob: prepimg})
self.inferred_request[reqnum] = 1
self.inferred_cnt += 1
if self.inferred_cnt == sys.maxsize:
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
heapq.heappush(self.heap_request, (self.inferred_cnt, reqnum))
cnt, dev = heapq.heappop(self.heap_request)
if self.exec_net.requests[dev].wait(0) == 0:
self.exec_net.requests[dev].wait(-1)
objects = []
outputs = self.exec_net.requests[dev].outputs
for output in outputs.values():
objects = ParseYOLOV3Output(output, self.new_h, self.new_w, self.camera_height, self.camera_width, self.threshould, objects)
objlen = len(objects)
for i in range(objlen):
if (objects[i].confidence == 0.0):
continue
for j in range(i + 1, objlen):
if (IntersectionOverUnion(objects[i], objects[j]) >= 0.4):
objects[j].confidence = 0
self.results.put(objects)
self.inferred_request[dev] = 0
else:
heapq.heappush(self.heap_request, (cnt, dev))
except:
import traceback
traceback.print_exc()
def inferencer(results, frameBuffer, number_of_ncs, camera_width, camera_height, vidfps):
# Init infer threads
threads = []
for devid in range(number_of_ncs):
thworker = threading.Thread(target=async_infer, args=(NcsWorker(devid, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps),))
thworker.start()
threads.append(thworker)
for th in threads:
th.join()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-numncs','--numberofncs',dest='number_of_ncs',type=int,default=1,help='Number of NCS. (Default=1)')
args = parser.parse_args()
number_of_ncs = args.number_of_ncs
camera_width = 320
camera_height = 240
vidfps = 30
try:
mp.set_start_method('forkserver')
frameBuffer = mp.Queue(10)
results = mp.Queue()
# Start detection MultiStick
# Activation of inferencer
p = mp.Process(target=inferencer, args=(results, frameBuffer, number_of_ncs, camera_width, camera_height, vidfps), daemon=True)
p.start()
processes.append(p)
sleep(number_of_ncs * 7)
# Start streaming
p = mp.Process(target=camThread, args=(LABELS, results, frameBuffer, camera_width, camera_height, vidfps), daemon=True)
p.start()
processes.append(p)
while True:
sleep(1)
except:
import traceback
traceback.print_exc()
finally:
for p in range(len(processes)):
processes[p].terminate()
print("\n\nFinished\n\n")