-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpressure_driver.hpp
572 lines (495 loc) · 21 KB
/
pressure_driver.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
#pragma once
#include <cmath>
#include "can/core/can_writer_task.hpp"
#include "can/core/ids.hpp"
#include "can/core/messages.hpp"
#include "common/core/bit_utils.hpp"
#include "common/core/logging.h"
#include "common/core/message_queue.hpp"
#include "i2c/core/messages.hpp"
#include "sensors/core/mmr920.hpp"
#include "sensors/core/sensor_hardware_interface.hpp"
#include "sensors/core/sensors.hpp"
#include "sensors/core/utils.hpp"
#if defined(USE_PRESSURE_MOVE)
constexpr size_t PRESSURE_SENSOR_BUFFER_SIZE = P_BUFF_SIZE;
#else
constexpr size_t PRESSURE_SENSOR_BUFFER_SIZE = 0;
#endif
namespace sensors {
namespace tasks {
using namespace can::ids;
/**
* Pressure sensor driver class. It takes in a i2c writer queue and
* can client queue so that it can handle sensor readings internally.
*
* @tparam I2CQueueWriter
* @tparam CanClient
*/
template <class I2CQueueWriter, class I2CQueuePoller,
can::message_writer_task::TaskClient CanClient, class OwnQueue>
class MMR920 {
public:
MMR920(I2CQueueWriter &writer, I2CQueuePoller &poller,
CanClient &can_client, OwnQueue &own_queue,
sensors::hardware::SensorHardwareBase &hardware,
const can::ids::SensorId &id,
const sensors::mmr920::SensorVersion version,
std::array<float, PRESSURE_SENSOR_BUFFER_SIZE> *p_buff)
: writer(writer),
poller(poller),
can_client(can_client),
own_queue(own_queue),
hardware(hardware),
sensor_id(id),
sensor_version(version),
p_buff(p_buff) {}
/**
* @brief Check if the MMR92 has been initialized.
* @return true if the config registers have been written at least once,
* false otherwise.
*/
[[nodiscard]] auto initialized() const -> bool { return _initialized; }
auto register_map() -> mmr920::MMR920RegisterMap & { return _registers; }
auto get_sensor_type() -> SensorType { return SensorType::pressure; }
auto get_host_id() -> NodeId { return NodeId::host; }
void set_filter(uint8_t should_filter) {
filter_setting = static_cast<mmr920::FilterSetting>(should_filter);
}
void set_echoing(bool should_echo) {
echoing = should_echo;
if (should_echo) {
pressure_buffer_index = 0; // reset buffer index
}
}
void set_bind_sync(bool should_bind) {
bind_sync = should_bind;
hardware.reset_sync();
}
void set_max_bind_sync(bool should_bind) {
max_pressure_sync = should_bind;
hardware.reset_sync();
}
auto get_threshold() -> int32_t { return threshold_pascals; }
auto set_threshold(float threshold_pa,
can::ids::SensorThresholdMode from_mode,
uint32_t message_index, bool send_threshold = true)
-> void {
threshold_pascals = threshold_pa;
if (send_threshold) {
auto message = can::messages::SensorThresholdResponse{
.message_index = message_index,
.sensor = SensorType::pressure,
.sensor_id = sensor_id,
.threshold =
convert_to_fixed_point(threshold_pascals, S15Q16_RADIX),
.mode = from_mode};
can_client.send_can_message(can::ids::NodeId::host, message);
}
}
auto write(mmr920::Registers reg, uint8_t command_data) -> bool {
return writer.write(mmr920::ADDRESS, static_cast<uint8_t>(reg),
command_data);
}
auto transact(mmr920::Registers reg) -> bool {
std::array reg_buf{static_cast<uint8_t>(reg)};
return writer.transact(
mmr920::ADDRESS, reg_buf, 3, own_queue,
utils::build_id(mmr920::ADDRESS, static_cast<uint8_t>(reg)));
}
auto write_config() -> bool {
if (!reset(_registers.reset)) {
return false;
}
// default measurement mode is MODE 4. 1 sample every 3.21 msec.
set_measure_mode(measurement_mode_rate);
_initialized = true;
return true;
}
auto poll_limited_pressure(uint16_t number_reads, uint8_t tags) -> void {
auto mode_delay_with_buffer =
MeasurementTimings[static_cast<int>(measurement_mode_rate)] +
DEFAULT_DELAY_BUFFER;
auto command_data =
build_register_command(_registers.low_pass_pressure_command);
if (filter_setting == mmr920::FilterSetting::NO_FILTER) {
command_data = build_register_command(_registers.pressure_command);
}
total_baseline_reads = number_reads;
poller.single_register_poll(
mmr920::ADDRESS, command_data, 3, number_reads,
mode_delay_with_buffer, own_queue,
utils::build_id(mmr920::ADDRESS, command_data, tags));
}
auto poll_limited_temperature(uint16_t number_reads, uint8_t tags) -> void {
auto mode_delay_with_buffer =
MeasurementTimings[static_cast<int>(measurement_mode_rate)] +
DEFAULT_DELAY_BUFFER;
auto command_data =
build_register_command(_registers.temperature_command);
total_baseline_reads = number_reads;
poller.single_register_poll(
mmr920::ADDRESS, command_data, 3, number_reads,
mode_delay_with_buffer, own_queue,
utils::build_id(mmr920::ADDRESS, command_data, tags));
}
auto poll_continuous_pressure(uint8_t tags) -> void {
// in milliseconds
uint16_t mode_delay_with_buffer =
MeasurementTimings[static_cast<int>(measurement_mode_rate)] +
DEFAULT_DELAY_BUFFER;
max_pressure_required_readings =
MAX_PRESSURE_TIME_MS / mode_delay_with_buffer;
max_pressure_consecutive_readings = 0;
auto command_data =
build_register_command(_registers.low_pass_pressure_command);
if (filter_setting == mmr920::FilterSetting::NO_FILTER) {
command_data = build_register_command(_registers.pressure_command);
}
poller.continuous_single_register_poll(
mmr920::ADDRESS, command_data, 3, mode_delay_with_buffer, own_queue,
utils::build_id(mmr920::ADDRESS, command_data, tags));
}
auto poll_continuous_temperature(uint8_t tags) -> void {
auto mode_delay_with_buffer =
MeasurementTimings[static_cast<int>(measurement_mode_rate)] +
DEFAULT_DELAY_BUFFER;
auto command_data =
build_register_command(_registers.temperature_command);
poller.continuous_single_register_poll(
mmr920::ADDRESS, command_data, 3, mode_delay_with_buffer, own_queue,
utils::build_id(mmr920::ADDRESS, command_data, tags));
}
auto set_measure_mode(mmr920::MeasurementRate rate) -> bool {
measurement_mode_rate = rate;
switch (rate) {
case mmr920::MeasurementRate::MEASURE_1:
if (set_register(_registers.measure_mode_1)) {
return true;
}
return false;
case mmr920::MeasurementRate::MEASURE_2:
if (set_register(_registers.measure_mode_2)) {
return true;
}
return false;
case mmr920::MeasurementRate::MEASURE_3:
if (set_register(_registers.measure_mode_3)) {
return true;
}
return false;
case mmr920::MeasurementRate::MEASURE_4:
if (set_register(_registers.measure_mode_4)) {
return true;
}
return false;
default:
return false;
}
}
auto reset(mmr920::Reset reg) -> bool {
if (set_register(reg)) {
_registers.reset = reg;
return true;
}
return false;
}
auto save_pressure(int32_t data) -> bool {
_registers.pressure_result.reading = data;
LOG("Updated pressure reading is %u",
_registers.pressure_result.reading);
return true;
}
auto save_temperature(int32_t data) -> bool {
_registers.temperature_result.reading = data;
LOG("Updated temperature reading is %u",
_registers.temperature_result.reading);
return true;
}
auto read_status(uint8_t data) -> bool {
_registers.status_result.reading = data;
return true;
}
auto send_status(uint32_t message_index) -> void {
auto status =
mmr920::StatusResult::to_status(_registers.status_result.reading);
auto message = can::messages::ReadFromSensorResponse{
.message_index = message_index,
.sensor = get_sensor_type(),
.sensor_id = sensor_id,
.sensor_data = static_cast<int32_t>(status)};
can_client.send_can_message(get_host_id(), message);
}
auto send_threshold(uint32_t message_index) -> void {
auto message = can::messages::SensorThresholdResponse{
.message_index = message_index,
.sensor = get_sensor_type(),
.sensor_id = sensor_id,
.threshold = get_threshold()};
can_client.send_can_message(get_host_id(), message);
}
auto send_peripheral_response(uint32_t message_index) -> void {
auto message = can::messages::PeripheralStatusResponse{
.message_index = message_index,
.sensor = get_sensor_type(),
.sensor_id = sensor_id,
.status = initialized()};
can_client.send_can_message(get_host_id(), message);
}
void reset_readings() {
writer.write(mmr920::ADDRESS,
static_cast<uint8_t>(mmr920::Registers::RESET));
}
void stop_continuous_polling(uint32_t transaction_id, uint8_t reg_id) {
poller.continuous_single_register_poll(
mmr920::ADDRESS, reg_id, 3, STOP_DELAY, own_queue, transaction_id);
}
void send_accumulated_pressure_data(uint32_t message_index) {
#ifdef USE_PRESSURE_MOVE
for (int i = 0; i < pressure_buffer_index; i++) {
// send over buffer adn then clear buffer values
can_client.send_can_message(
can::ids::NodeId::host,
can::messages::ReadFromSensorResponse{
.message_index = message_index,
.sensor = can::ids::SensorType::pressure,
.sensor_id = sensor_id,
.sensor_data =
mmr920::reading_to_fixed_point((*p_buff).at(i))});
if (i % 10 == 0) {
// slow it down so the can buffer doesn't choke
vTaskDelay(50);
}
(*p_buff).at(i) = 0;
}
#else
std::ignore = message_index;
#endif
}
auto handle_ongoing_pressure_response(i2c::messages::TransactionResponse &m)
-> void {
if (!bind_sync && !echoing && !max_pressure_sync) {
auto reg_id = utils::reg_from_id<mmr920::Registers>(m.id.token);
stop_continuous_polling(m.id.token, static_cast<uint8_t>(reg_id));
}
bool echo_this_time = echoing;
// Pressure is always a three-byte value
static_cast<void>(bit_utils::bytes_to_int(m.read_buffer.cbegin(),
m.read_buffer.cend(),
temporary_data_store));
uint32_t shifted_data_store = temporary_data_store >> 8;
save_pressure(shifted_data_store);
auto pressure = mmr920::PressureResult::to_pressure(
_registers.pressure_result.reading, sensor_version);
if (max_pressure_sync) {
bool this_tick_over_threshold =
std::fabs(pressure - current_pressure_baseline_pa) >=
mmr920::get_max_pressure_reading(sensor_version);
bool over_threshold = false;
if (this_tick_over_threshold) {
max_pressure_consecutive_readings =
std::min(max_pressure_consecutive_readings + 1,
max_pressure_required_readings);
over_threshold = (max_pressure_consecutive_readings ==
max_pressure_required_readings);
echo_this_time = true;
} else {
max_pressure_consecutive_readings = 0;
}
if (over_threshold) {
hardware.set_sync();
can_client.send_can_message(
can::ids::NodeId::host,
can::messages::ErrorMessage{
.message_index = m.message_index,
.severity = can::ids::ErrorSeverity::unrecoverable,
.error_code = can::ids::ErrorCode::over_pressure});
} else {
hardware.reset_sync();
}
}
if (bind_sync) {
if (std::fabs(pressure) - std::fabs(current_pressure_baseline_pa) >
threshold_pascals) {
hardware.set_sync();
} else {
hardware.reset_sync();
}
}
if (echo_this_time) {
auto response_pressure =
std::fabs(pressure) - std::fabs(current_pressure_baseline_pa);
#ifdef USE_PRESSURE_MOVE
if (pressure_buffer_index < PRESSURE_SENSOR_BUFFER_SIZE) {
(*p_buff).at(pressure_buffer_index) = response_pressure;
pressure_buffer_index++;
}
#else
can_client.send_can_message(
can::ids::NodeId::host,
can::messages::ReadFromSensorResponse{
.message_index = m.message_index,
.sensor = can::ids::SensorType::pressure,
.sensor_id = sensor_id,
.sensor_data =
mmr920::reading_to_fixed_point(response_pressure)});
#endif
}
}
auto handle_ongoing_temperature_response(
i2c::messages::TransactionResponse &m) -> void {
if (!bind_sync && !echoing) {
auto reg_id = utils::reg_from_id<mmr920::Registers>(m.id.token);
stop_continuous_polling(m.id.token, static_cast<uint8_t>(reg_id));
}
// Pressure is always a three-byte value
static_cast<void>(bit_utils::bytes_to_int(m.read_buffer.cbegin(),
m.read_buffer.cend(),
temporary_data_store));
uint32_t shifted_data_store = temporary_data_store >> 8;
save_temperature(shifted_data_store);
if (echoing) {
auto temperature = mmr920::TemperatureResult::to_temperature(
_registers.temperature_result.reading);
can_client.send_can_message(
can::ids::NodeId::host,
can::messages::ReadFromSensorResponse{
.message_index = m.message_index,
.sensor = can::ids::SensorType::pressure_temperature,
.sensor_id = sensor_id,
.sensor_data =
mmr920::reading_to_fixed_point(temperature)});
}
}
auto handle_baseline_pressure_response(
i2c::messages::TransactionResponse &m) -> void {
static_cast<void>(bit_utils::bytes_to_int(m.read_buffer.cbegin(),
m.read_buffer.cend(),
temporary_data_store));
uint32_t shifted_data_store = temporary_data_store >> 8;
auto pressure = mmr920::PressureResult::to_pressure(shifted_data_store,
sensor_version);
pressure_running_total += pressure;
if (!m.id.is_completed_poll) {
return;
}
auto current_pressure_baseline_pa =
pressure_running_total / total_baseline_reads;
auto pressure_fixed_point =
mmr920::reading_to_fixed_point(current_pressure_baseline_pa);
// FIXME This should be tied to the set threshold
// command so we can completely remove the base line sensor
// request from all sensors!
if (utils::tag_in_token(m.id.token,
utils::ResponseTag::IS_THRESHOLD_SENSE)) {
can_client.send_can_message(
can::ids::NodeId::host,
can::messages::BaselineSensorResponse{
.message_index = m.message_index,
.sensor = can::ids::SensorType::pressure,
.offset_average = pressure_fixed_point});
set_threshold(current_pressure_baseline_pa,
can::ids::SensorThresholdMode::auto_baseline,
m.message_index, false);
} else {
auto message = can::messages::ReadFromSensorResponse{
.message_index = m.message_index,
.sensor = SensorType::pressure,
.sensor_id = sensor_id,
.sensor_data = pressure_fixed_point};
can_client.send_can_message(can::ids::NodeId::host, message);
}
pressure_running_total = 0x0;
}
auto handle_baseline_temperature_response(
i2c::messages::TransactionResponse &m) -> void {
static_cast<void>(bit_utils::bytes_to_int(m.read_buffer.cbegin(),
m.read_buffer.cend(),
temporary_data_store));
uint32_t shifted_data_store = temporary_data_store >> 8;
auto temperature =
mmr920::TemperatureResult::to_temperature(shifted_data_store);
temperature_running_total += temperature;
if (!m.id.is_completed_poll) {
return;
}
auto current_temperature_baseline =
temperature_running_total / total_baseline_reads;
auto offset_fixed_point =
mmr920::reading_to_fixed_point(current_temperature_baseline);
if (echoing) {
can_client.send_can_message(
can::ids::NodeId::host,
can::messages::BaselineSensorResponse{
.message_index = m.message_index,
.sensor = can::ids::SensorType::pressure_temperature,
.offset_average = offset_fixed_point});
}
temperature_running_total = 0x0;
}
auto get_can_client() -> CanClient & { return can_client; }
private:
I2CQueueWriter &writer;
I2CQueuePoller &poller;
CanClient &can_client;
OwnQueue &own_queue;
hardware::SensorHardwareBase &hardware;
const can::ids::SensorId &sensor_id;
const sensors::mmr920::SensorVersion sensor_version;
mmr920::MMR920RegisterMap _registers{};
mmr920::FilterSetting filter_setting =
mmr920::FilterSetting::LOW_PASS_FILTER;
static constexpr std::array<float, 4> MeasurementTimings{0.405, 0.81, 1.62,
3.24}; // in msec
static constexpr float DEFAULT_DELAY_BUFFER =
1.0; // in msec (TODO might need to change to fit in uint16_t)
static constexpr uint16_t STOP_DELAY = 0;
/**
* Time required before raising a Max Pressure error. The pressure must
* exceed the threshold for the entirety of this period.
*/
static constexpr uint16_t MAX_PRESSURE_TIME_MS = 200;
#ifdef USE_PRESSURE_MOVE
mmr920::MeasurementRate measurement_mode_rate =
mmr920::MeasurementRate::MEASURE_1;
#else
mmr920::MeasurementRate measurement_mode_rate =
mmr920::MeasurementRate::MEASURE_4;
#endif
bool _initialized = false;
bool echoing = false;
bool bind_sync = false;
bool max_pressure_sync = false;
float pressure_running_total = 0;
float temperature_running_total = 0;
uint16_t total_baseline_reads = 1;
float current_pressure_baseline_pa = 0;
float current_temperature_baseline = 0;
size_t max_pressure_consecutive_readings = 0;
size_t max_pressure_required_readings = 0;
// TODO(fs, 2022-11-11): Need to figure out a realistic threshold. Pretty
// sure this is an arbitrarily large number to enable continuous reads.
float threshold_pascals = 100.0F;
float offset_average = 0;
uint32_t temporary_data_store = 0x0;
template <mmr920::MMR920CommandRegister Reg>
requires registers::WritableRegister<Reg>
auto build_register_command(Reg ®) -> uint8_t {
return static_cast<uint8_t>(reg.address);
}
template <mmr920::MMR920CommandRegister Reg>
requires registers::WritableRegister<Reg>
auto set_register(Reg ®) -> bool {
auto value =
// Ignore the typical linter warning because we're only using
// this on __packed structures that mimic hardware registers
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
*reinterpret_cast<mmr920::RegisterSerializedTypeA *>(®);
value &= Reg::value_mask;
return write(Reg::address, value);
}
std::array<float, PRESSURE_SENSOR_BUFFER_SIZE> *p_buff;
uint16_t pressure_buffer_index = 0;
};
} // namespace tasks
} // namespace sensors