diff --git a/examples/01_minibackend_demo.ipynb b/examples/01_minibackend_demo.ipynb index fd469d9..b8b7886 100644 --- a/examples/01_minibackend_demo.ipynb +++ b/examples/01_minibackend_demo.ipynb @@ -17,7 +17,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -40,39 +39,10 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Deserialised process graph into nested structure\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Walking node root-e298ce00-9131-48e3-94a2-559580f96fe9\n", - "Walking node mintime-e298ce00-9131-48e3-94a2-559580f96fe9\n", - "Walking node min-b130a201-85a8-4792-be65-688af048cbf1\n", - "Walking node evi-e298ce00-9131-48e3-94a2-559580f96fe9\n", - "Walking node m3-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node div-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node sub-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node nir-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node red-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node add_one-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node sum-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node nir-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node m1-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node red-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node m2-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node blue-06d7a847-5e5b-43e3-b162-96523efef2c1\n", - "Walking node load_collection-e298ce00-9131-48e3-94a2-559580f96fe9\n" - ] - } - ], + "metadata": { + "tags": [] + }, + "outputs": [], "source": [ "from openeo_pg_parser_networkx import OpenEOProcessGraph\n", "\n", @@ -84,12 +54,14 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": { + "tags": [] + }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 2, @@ -111,11 +83,13 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "tags": [] + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACDCElEQVR4nO3dd1yV1R/A8c9zL3sjoOJEce89MHeO3CvN0tRypVbmSG24sp+ZOdKybGqaZVqZo7LMkYqp5d4L3AMHDkDGvc/vjyMIArLuhQt8368XL+C5z3Oec1G433vO93yPpuu6jhBCCCHyLUNOd0AIIYQQOUuCASGEECKfk2BACCGEyOckGBBCCCHyOQkGhBBCiHxOggEhhBAin5NgQAghhMjnJBgQQggh8jkJBoQQQoh8ToIBIYQQIp+TYEAIIYTI5yQYEEIIIfI5CQaEEEKIfE6CASGEECKfk2BACCGEyOckGBBCCCHyOQkGhBBCiHxOggEhhBAin5NgQAghhMjnJBgQQggh8jkJBoQQQoh8ToIBIYQQIp+TYEAIIYTI5yQYEEIIIfI5CQaEEEKIfE6CASGEECKfk2BACCGEyOfscroDQoj003UdTBfBfBUwg+YKdmXQNIec7poQIheTYEAIG6frcRC9CT3yB4jdA/rdR84wotsFojm1B+en0Yy+OdJPIUTupem6rud0J4QQKdPvb0C/MxnM1wAjYHrM2QZAA+dn0dxHoRlcs6OLQog8QIIBIWyQrkeh334L7q8BNCAjv6YGMBRC85qH5lDdSj0UQuQlEgwIYWN0cwT6rRcgdj9gzmQrBsAOzfsLNMcGFuydECIvkmBACBui6zr6rUEQs43MBwLxDIADmu9PaHZlLNA7IUReJUsLhbAlUcsh5m+yHgjwoI1Y9PCxKglRCCFSISMDQtgI3XwT/VpzIMribWvub6G5Pm/xdnOKKc5E6OHznPzvDOePXSTmfiz2jnYULetP2dqlKV2tJHb2slhKiPSS3xYhbEXkCiDaKk3rEV+CSx80LXcPBt64fIt1C/9k9SfruR12BwA7e2PC43GxarWFm7crHQa3osPQ1hQq6ZcjfRUiN5GRASFsgK7r6GFNHhQTsg6VTNjEau1bk9lsZt3CP/l09DfExcRhNqc9jWIwGjAYNAZM6033UR0wGo1pXiNEfiXBgBA2QI87i369lRXvYAcu/TB4jLPiPawjKuI+U7p/wH9/7M90G5WCyjNtzXjcvd0s2DMh8o7cPWYoRF4Re9DKN4iD2ANWvofl3Y+MZkLbaez9K2s/n2M7TzKm+WQibkdYqGdC5C0SDAhhC0xnURUGrXmPM9Zt3wo+evlLju44gdmUtdUVZpOZ0MPneb//x8hgqBDJSTAghA3Q9RhUpUFr3iTGuu1b2K7f9rL+602YzZZ58TabzAT/sptN32+3SHtC5CUSDORBixYtQtM0QkNDs/W+/fv3JyAgIFvvmVhKz7tZs2Y0a9Ys2/uyefNmNE1j8+bN6Tpf0xzJWMnhTMhFOxuazWY+evlLNINlAyRN01jw6lfExsRatF0hcjsJBoTIggULFrBo0aKsN2RXisdvQmQBdmWTHTKZ4MQJOHnSurfOqL1/HeTymavoFhoViKfrOrev3yV41W6LtitEbid1BoTIggULFuDr60v//v2THG/SpAlRUVE4OKTz3bhdFct3LukNiNWrsmgh3LgBhw/Dvn0qCIiNhQIF1HFb8ftXGzHYGTDHWaISY1IGo4Ffv9hA055BFm9biNxKggEhrMBgMODk5JT+C4zFwFgUTBet1KM4Pv68EaMnqO80DeLz6DQN6ta10m0z6eDWo1YJBEDlDhz55yS6rqNpVs7TECKXkGmCfGLBggVUrlwZR0dHihQpwvDhwwkPD09yztatW3n66acpUaIEjo6OFC9enNdee42oqOTlcVetWkWVKlVwcnKiSpUq/Pzzz5nu286dO2nXrh3e3t64urpSrVo1PvzwwyTnbNy4kcaNG+Pq6oqXlxedO3fm6NGjmbpfdHQ0kyZNokyZMgnP8/XXXyc6Onn1v6VLl1KvXj1cXFzw9vamSZMm/PHHHwAEBARw+PBhtmzZgqZpaJqWkJ+QWs7AihUrqF27Ns7Ozvj6+tKnTx8uXryornfpC2gMePUKHoGnuHg5jq79L+EReIpClc8wdkoYJlNmhs01MJZgyIiG1K+vjiROqNd1KFoUbt/ORNNWcOfGXW5cumXVe9y/d59Lp69Y9R5C5CYSDOQDkydPZvjw4RQpUoRZs2bRvXt3Fi5cSOvWrYmNfZhItWLFCiIjI3nppZeYP38+bdq0Yf78+Tz/fNKa9n/88Qfdu3dH0zSmT59Oly5dGDBgAP/++2+G+/bnn3/SpEkTjhw5wquvvsqsWbNo3rw5a9euTThnw4YNtGnThmvXrjF58mRGjRpFcHAwjRo1ynCSpNlsplOnTnzwwQd07NiR+fPn06VLF+bMmUOvXr2SnDtlyhT69u2Lvb09U6dOZcqUKRQvXpyNGzcCMHfuXIoVK0aFChVYsmQJS5Ys4c0330z13osWLaJnz54YjUamT5/OoEGD+Omnn3jiiSdUYObcDTRXQMNkhqd6X8SngJH3J/rSpKEzsz8N57OlmXnF1tFcB+LqprF1K/TsqUYDEvvqK/D1hVat4KOP4Ny5TNzGQm5eCc+W+9zKpvsIkRvINEEeFxYWxvTp02ndujW//fYbBoOK/ypUqMCIESNYunQpAwYMAGDGjBk4OzsnXDt48GDKlCnDG2+8wblz5yhRogQA48aNo1ChQmzbtg1PT08AmjZtSuvWrSlZsmS6+2YymRgyZAj+/v7s27cPLy+vhMcSrwUfO3YsBQoUYP2GTVyOiOXExTAGFQjgvVcH0P+lV/jks88p4++brnsuW7aMDRs2sGXLFp544omE41WqVGHo0KEEBwcTFBTEqVOnmDp1Kl27dmXlypUJP7fEfevSpQtvvfVWwjv8x4mNjWXcuHFUqVKFv//+O2EK4YknnqBDhw7MmTOHKVOmgMckoC/37+v07OTGW6N8ABjaz4s6rc7x9bI7vNTPK/UbJWME++rg3BMAe3tYtgzc3FQAAFCjBvzyC6xZoz6PGgUvv6yOd+oEnTtDzZrJAwhr0dNRatgSTFmsXSBEXiIjA3nchg0biImJYeTIkUle0AYNGoSHhwfr1q1LOJY4EIiIiOD69esEBQWh6zp79+4F4PLly+zbt49+/folBAIArVq1olKlShnq2969ewkJCWHkyJFJAgEgYS73/IWL7Nu3j4JVG9B55nKGLviJuau3sf70LdyLl2Pb5o08M3MZT4xfwNpdR9K854oVK6hYsSIVKlTg+vXrCR8tWrQAYNOmTYCaBjGbzUycODHJzy1x3zLi33//5dq1awwbNixJLkH79u2pUKHCw38Hp04qdwAY8rxnkjaeqO/MmXMZWRJnAM0ZzfP9JBsUGY3w+efqBR+ge3coUQKGD4c//oCwMPj+e6hUCebNg9q1Hz6+fj2kMJtiMaGhoZSuFsAlPdR6N3nAzcvV6vcQIreQYCCPO3v2LADly5dPctzBwYHSpUsnPA5w7tw5+vfvT4ECBXBzc8PPz4+mTZsCcPvBhHL8+WXLJl+m9ug90nL69GlAvStPybEL1+j77kJ1f1wSjpt1nTiTGQfvgpjuR2COjeZ+TBy7T10A4KO124mMTrnAzsmTJzl8+DB+fn5JPsqVKwfAtWvXEvpmMBgyHOCkJrV/B1CjNPGPa5qG5lAHJycjfr5JVyJ4exm4FZ7ed7NG0JzQvL9GsyuR7FGDAT78ENatg9deS/qYpyf06gXffgvXrsFff6mA4ddfoW1b8PNTUw3ffgs3b6azOxnk4GRvnYYfMNoZKF6hqFXvIURuItMEAlBD9q1ateLmzZuMGzeOChUq4OrqysWLF+nfv3+6domzpGVb9jLzpy1E3lTb1OrpKMhjfjB8/+t/xzl47RsWvNQ1+TlmM1WrVmX27NkptlG8ePEs9NpSjBiNTuD8DEQtQ8XsGfn5q4RBzetDNPsKqZ+lQbt2j2/J3h5atFAfc+bAoUNqKmH1aujTR40yNG6sphI6dYLSpTPQzRSULFmSqKgo3mw3nYNbjlqtdHDJSsVxcLRuwCFEbiLBQB4XP4d//PhxSif6Sx0TE0NISAhPPvkkAAcPHuTEiRMsXrw4ScLgn3/+mWJ7J1OoUnP8+PEM9S0wMBCAQ4cOJfQDYNFf/zLnl60AGN28AYi+dS3Z9dE3r2F0csVg75jkuK7rhN25R7+5y4mNicXZ4eEf/cDAQPbv30/Lli0fO9wfGBiI2WzmyJEj1KhRI9Xz0jtlkPjfIX5KIt7x48dTzLUweE5Gd2qDfmcSmEJ5fLni+MccwPUFNLfhaBauOKhpULWq+njrLbh4EdauVcHBuHFqhKFKlYd5BnXqqBGIjN1Dw8nJiZa9G3Ngc9rTPpl6HgaNFs82tkrbQuRWMk2Qxz355JM4ODgwb968JO+yvvzyS27fvk379u0BEvZ6T3yOruvJlvj5+/tTo0YNFi9enDB1ACpoOHIkY3+8a9WqRalSpZg7d27CMscth84w55etCf2wd/XAybcot479iyn64RLH+zcuc/f8cTwCKqbYtsmsExkdw8lL1zElqmLXs2dPLl68yOeff57smqioKCIi1K52Xbp0wWAwMHXq1GSjIol/Rq6ursmWaKakTp06FCxYkE8//TTJEsbffvuNo0ePJvw7PEpzbIjmux7N+5sUKwiqk5zBvjaa+1toBXdgcH/N4oFASooWhSFD1PTB9euwciXUqgWzZ0+mfn2NwoVPULZsH1xdPfHz8+Ptt99G13XOnz9P586d8fDwoHDhwsyaNSuhzdDQUDRN44I5BCdXFeQd1nezSf+Z+3oU+/VgNuk/s0VfzQl9f6ZGDoxGA21faG6xn4MQeYGMDORxfn5+TJgwgSlTptC2bVs6derE8ePHWbBgAXXr1k3Igq9QoQKBgYGMGTOGixcv4uHhwY8//sitW8nXe0+fPp327dvzxBNP8MILL3Dz5k3mz59P5cqVuXfvXrr7ZjAY+OSTT+jYsSM1atTg2T59WfnfGW5ducj9m1co3XkIAP6NOhKy5jNOrfiQApXqY46L5fqBbRgdnChUr02q7ZvMOjFxJi5cD0841rdvX3744QeGDh3Kpk2baNSoESaTiWPHjvHDDz+wfv166tSpQ5kyZXjzzTd55513aNy4Md26dcPR0ZHdu3dTpEgRpk+fDkDt2rX55JNPmDZtGmXKlKFgwYLJ3vkD2NvbM2PGDAYMGEDTpk3p3bs3V69e5cMPPyQgIIDXHp24T0TTNHBsgObUBvgHreAuMF0D4kBzB2PRJAmCOcHdXeUVdO8OJUvCO+8A9OLKlYpERr7H/fvrmDZtGqdPF2D37oW0atWCGTNm8O233zJmzBjq1q1LkyZNEtpzcLSn94RufP32d6CraaK9bMWTApSlGje5xjlO4oIbxQhMdz81g0bXV9rh6eth+R+CELmYjAzkA5MnT+ajjz7i3LlzvPbaa/zwww8MHjyYP/74A3t7NYRub2/PmjVrqFGjBtOnT2fKlCmULVuWb775Jll7bdu2ZcWKFZhMJiZMmMBPP/3E119/TZ06dTLctzZt2rBp0ybKlSvH7NmzOf3XSu6dP4FHwMPEPfcS5SjVaTBGJ1eu7PydsL2bcSlcksAer+Dg6ZPmPcLuRHDiYhigApBVq1bx3nvvcfDgQcaMGcOUKVPYvXs3r776akIiIcDUqVP56quv1Bz2m28yceJEzp49S8uWLRPOmThxIu3ateP999+nd+/eTJ06NdV+9O/fn+XLlxMTE8O4ceNYuHAhXbt2Zdu2bclWUzyOZvBCsy+HZl8Jza54jgcCj4qfGujatR537izjyJGXeOedX3BwKMZ3343m9OkBHDy4gIiIl5g7dy3Ozs58Fb/OMZFer3cmsFpJNE3DjJlCFKOSVodiWiDVtIa448VFQtPfL6MB/1IF6Te1V9onC5HPaLps7i1sQFRMLC3eXEhktOV3kzMaNLo1rMpbvVqmfbLIssmTJzNlyhR27dpF3UR1jrt27cqqVauYMyeMjRt9+fNPuH8fHB1r4ufnzvLlf1OoUChlypTi66+/pn///lw4cYlGVZtwLuY0TeiIg/YwP+S4vo/LnKWZ1jnNPhmMBhyc7JlTN5IyERdh0CBo1gwCA7OvgIIQNsy23lKIfGvj/lNWCQRATRes3nWY6Ng4q7QvUhZfpCqep6cnTk5OjBzpy+rVamOkVavA29uTy5dv0agR1Kunzt2zByIjoVi5ItRtWwMDRpzsnJO0Z4c9caT9f8ZgZ8DRxYEZf06kzN3zsGuXCgbKloVChaB3b1i40HbqMQuRAyQYEFZx8+ZNrly5kupHWFhYkvP3hVzCLqOp5xkQHWvi5KXrVmtfJBeflJraMRcXteqgfHmoUEFn+3Z4+mn12Pz54OOjViZcvu6Go7MTtVtXB9S8f3rEv+Gv3LA8C/d+QKUG5WDBgqQnhYXBDz/A0KGqwpIQ+ZQkEAqr6NatG1u2bEn18ZIlSybZV+Bg6BXirFjLQAOOnL9KlZKFkz948KBaUF8h9TX5wvqCgqBIEfUmffp0sLNT9QyCg9Xjm29OoF6vYML3r+LiMbXq4NHyE5pBw2DQMMWZKV6hKE+P7kTr/s0eVpGsW1eVVNyzJ+m2jYGBMGJE9j1ZIWyMBAPCKmbNmpXiSoR4iUsfA1wNv2vV/hiNBq7djnh44NYt+O47+Owz2L9fjU/v3GnVPoj0K1wY+veHMWPgmWfUdEJhf43PVzciMrIRlYqdxlV7A84foUiZwsTej8Xe0Z6SlYpRrk4gNVpUoXJQ+ZTrQIwaBc899/B7sxnefRe8vbPr6QlhcyQYEFZRu3btDJ1vzoY8VpPJpIaEV6xQlXLiEuUQFChg9fuLzHFyUqMEP/2kEg7/+gt++SWQZctUjYl1N+fTvr2aUmjTRm3C9Fg9esCrr6riCEajqpT0/PMQG6vKKgqRD0nOgLAJro7WLZJj1nXcDuxXRfdXrlR/+HVdfWiaKqc3e7baoWfLFjh5EjJQM0FkDycnaN9eDeiMHq2ODR2qRv179FB5Bu3aqamGS5dSacTB4eGUwFdfqYTC556Dvn1h4sSH0wdC5COytFDYhNFfrmXjgVPExUZzcctPRF45R+y9cNDNOHj4UKBSfXyqNkJLISktvT4a2JHGH72vXgB0XQ0PgwoGvLzUdnyRkUkvcnNTE9n+/g8/p/S1u7ssUcthZ86oHIPVq+Hvv8FkUikCnTqpj6pVE/0TxcbCgQMqfwDU/4cZM2DCBBUwfv01PDKVJUReJsGAsAlf/bmb+Wu3ExN1j9DVn+NaNBB79wJomkbE5VDCj/+HV7kalGjTN9P32DhtMD4ernDqlFpatnmzekDT4OOP1VvMu3fh8mX1tvLy5aRfJz5295EcBxeXxwcL8Z89PSVoyAY3b8Jvv6nZoN9/V/9cAQEP901o3FjljCbz449qhKB6dZWoUKhQNvdciJwhwYCwCaHXbtF52qJUH7+45SduHNhGxRcmY++asVKyBk2jSsnCLBn1zMODug5LlsArr6j15T//DF26pL/Re/ceHyzEf/3o2nUnp8cHC/HHChSQoMFCoqPVzE/8bosXLqiBoHbtVHDQtq2K0RLs3q0ecHRUezxXrpxTXRci20gwICwuvgLd8ePHmTp1KmvWrMHBwYGhQ4cydepULly4wIgRI9i0aRMuLi6MHTuW0aNHM+ijlfx76gJmc/L/kmF7NnN5+2rKPTcOpwIZf7f2Xr+neKp2CksHr1+HpUvVjjvWGBaOjEweIKQUQDy68sLBIe1RBn9/NUluxfoMeY2uw969Kij45RfYt0+NEDRr9nA6oUQJ4Nw56NgRQkNV0mmb1PfAECIvkGBAWFx8MFCjRg0qVqxI48aNWbduHevWrWP27NksXLiQFi1aULVqVb799lu2b9/Oli1bcCtamgEfrgDAbIrDHHMfc1wsUdfOc3Hzj2hGOyo8/waaIf15A0aDRjFfL34c3xd7u8znG1jd/fsPA4XHBQ43biS9zs7uYaCQ2ihDkSLg5ydBQwrOnYM1a1RgsHmzSiWoUUNNJXRqGUHN93qhrf9dVUF66aUc6aNuugyx+9BjDz/YoMoMBnc0u/JgXxXsKtrc/hQi95FgQFhcfDAwePBgFi5cCKhlfQEBAVy8eJHp06czbtw4AMLDwylSpAg9e/Zk0aJFTPxmE7/s3k/4yT2cW78koU3ngsUp1rIXzr5FMtQXTYMlo3pTNaViQ7lRTAxcuZJ2TsO1a0mvMxrV4v20RhsKFlTn5kO3b6v8gtWr1ezA7dtQrJhOpwLb6HzgHZqNqIrD3Pez5eej6zpEb0SPXAIxD6ouYYeqsqSjFoI9WBprLIrm0gece6IZ3K3eN5E3STAgLC6tjWrCwsLw9fVNOF6zZk3c3d359NO/ad8pFueGyzE4hRAZdglTTBT3zp/k/vVL+DfuhGvhgAz15bXOjenfMuO7KeZ6sbFw9WraOQ1XryZdSmcwqIAgrWTIQoVSycDLG2JjYevWh3kGoaHgzh2e8t9Hp6l1adfd2Wo1inTTJfTbbzwIAoyAKY0rHuSWGHzQPKejOTa1TsdEniZFh4TVpLZRTeJAIP742bM3aNgQSpa059s3uzNt9Y+ccHHHrOt4lanOtd0bCFm1kPJ9J6SZQKih3jsNa9cwfwYCoF6oixVTH48TF6dGEVILFvbtg19/VUGDKdGLkqapqYfHTU34+6vRCAfr1pCwBnt7aNFCfcydC4cOwS8fXGH1Ulf6DHLGOFSnSRMtYXVCqVKWua8eHYwe/hLoMQ+OpBUIQEJNZvNN9FuD0F0HobmNSbn6ohCpkGBAWE1aG9XEu3QJQkN1nnpK1fzx8HDm61K9+HD1Vr7fuh+DpuFZphpX/vmVOyGH8KkSlPo9DRquTg5MeqYVT9Yoa9HnkyfZ2akX7iJFHq65T4nJpDb1SS2n4dAh+OMPNYUR98jukL6+addp8PdX2fs2SNNUjYKqi8vx1thDXGxbn7V3m/JL9BuMG+fFa6+pIoadO6sExDp1MpeeoUfvQL81EBUAZGbA9kHdjIjP0fVYcJ8gAYFINwkGRI4xmVTt+ZMn1Uq61avVaxOAi6M9E55uQasa5fjk9x1sDb4AgDnmfrJ27AwG4sxmnBzs6NKgCkPbNsDbTQrGWFR8zkHhwlCzZurnmc0qyTG1qYljx2DTJvV9TEzSawsUSDsR0t8/Z4sBValC0f9WM6RLF4bsLcK9r75jvVNnVq+GTz5RWxz4+6uFCJ07q5EFJ6e0m9VN19DDh6Ne0C0wcxu5COwrg3PnrLcl8gUJBkSOuHdPbSP/669Qpox6U2hnB9evX8fHxyfhHU2dssX4suzT9Nv3ByeBhvXrc8/NnYj7MRg0DT9PV6oF+FO9VBFa1SiLq1PuG5LOUwwGNX3g56cK96RG11VloJSmJi5fVoWhtm5Vx6Kjk17r6Zm+qpCurtZ5joUKwcaNMGAAbn260H36dLovGkecSSM4+OGyxc8+U11o3VoFBu3bq0GS5D8KHf32W6BHkfDuPss09DtTwKEhmrGghdoUeZkEAyLbXbig3jmdPg1r16oqsNevq8eWLl3Kp59+SpcuXShdujR3795l/fr1/Pnnn3Ts2JEfZ72Vs50XlqFpqkaCj48ag0+NrkN4eOo5DaGhsGOH+j4qKum17u7pqwrpnokMfGdnWLYMypVTJYxPnMDu009p0sSBJk1g5kw1CBKfgDhggHrKjRo9rIJYNn4WK2YnxGzOeB8eSwc9Cv3eAjTPyRZuW+RFEgyIbGU2q92C7e1h+3b1OjBjxsPHn3jiCYKDg/nuu++4evUqdnZ2lC9fntmzZ/Pyyy/nXMdFztA0tbWwtzdUqpT6eboOd+48vkbDv/+qzxERSa91dU17asLfP3kpaYMBpk5Vr+oDB0JIiCpnXKAAmgYVK6qP8eNV/uXatSowmDgRxo6FChVUYDBm8FJ8XNOzaiCjTBD1E7r7GDRDWls5ivxOlhaKbPPzz2pzuKpV1Tumwnlk6b/IZeL3n0hr2eWdO0mvc3ZOPVi4cQOmTFEjHb/9pkYMUhEZCRs2PCh0tOkux7bWxWi01PRAcprHe2gu3azWvsgbJBgQVqfrath0/Hi1zezixbIhnMgFIiIeXxEy/uvw8OTXFi6s1hs+brTBxwfT/Z1ot5+34pOwA+eeGGSqQKRBggFhVTExMGwYfPklvPmmGlWVqrgiT4mKehgcnDwJ//ufSohp2FDtZhkfNNy8mfQ6e3v0McXQR9ipgoLWYlcJg+8qK95A5AUSDAiruXULuneHbdvgiy/geWu+ARLCVsTGqgj4iy/gjTfgnXdUBBwdnayUtDngd6h5EgzWmybAUAhDwa3Wa1/kCZJAKKzi1Cno0EHVqdmwAZo0yekeCZFN7O3VusLy5eH11+HECTU35uICJUuqj3h37kHkaSy3pDAl1mxb5BUyYCssbutWqF9f5Qrs3CmBgMiHNE1V1PrpJ1VMo1kzNSrw6GkGD9IqMrQ5OBKj/0k2B0dmri8Gr8xdJ/IVCQaERX3zDbRsCdWqqeXfZcrkdI+EyEFduqjo+OJFFSEfOJD0cftKWH5JYWJGsK9mxfZFXiHBgLAIsxneegv69YO+fWH9elVdVoh8r1Yt2LVLLTts1EiNFMSzq5Lm5U0aOBMREkiTBplZgmNGs0/7HkJIMCCyLCpKlRZ+911VQOiLL3LlRnVCWE/RovD332qzgo4dYf58ADSjDzg04HF/ig0GDScnAwZDZjYdMoBjm8z1WeQrEgyILLl6FZo3hzVrVPG1119PWqRNiPzq4sWLvPDCCxQqVAhHR0cq16/PVx07wmuvcfWVV7AzGJgyaRKaSx8SJ/kdPxWD0f8kH38VDmQlZ8AITm3RjClsiCDEIyQYEJl26JCaBj13Tr3p6SZFzoQA4OrVqzRo0IANGzYwYsQIPvzwQ8qUKcOLgwYxt1gxCi1cSFNd54fZsyG6LthVBtT23j+svovRCD06ZrWEsIbmNjzLz0XkD7K0UGTK779Dz55QurQaFShePKd7JITtePPNNzGZTBw8eBAfHx8Ahg4dSu/evZk8eTJDLl+m15EjDPnwQw7XqUflv75EdxgKwA+/3KNpQ2cK+WXtz7PmNhLNTjJ4RfrIyIB4LJNJbQyX2Mcfq+1YmzZVBYUkEBDiIV3X+fHHH+nYsSO6rnP9+vWEjzZt2nD79m327NlDt7fews7OjuXXr6PVfRrt+gscOhbNkRMxPN0pEzspJtDAsQW4vmCx5yTyPgkGxGO9+65aHrh+PcTFwSuvwIgR8OqrsGoVuMlmaEIkERYWRnh4OJ999hl+fn5JPgYMGADAtWvX8PX1pWXLlvzg4wNly6LVfZsfviqKnR10a+eR+Q44tkTzmoemycCvSD/53yJSFRMD8+ap0YFu3aB2bQgOhk8+gaFDc7p3Qtgms1klA/bp04d+/fqleE61amrt/zPPPMOAAQPY9+231Jg3jxVLltGycgl8C5YE03nSKkj0kBEwci3ydSpX7sPw4QbGj1dFD4VIDwkG8rhzYeH8c/wsR89f48yVm0THxeFoZ0fpwgWoWLwgDcqXpISfV4rXrlihdmYFte3qtm3w/fcqV0AIkTI/Pz/c3d0xmUw8+eSTjz23S5cuDBkyhOWrVsGYMZxYtowJh8+hjW8Ms3ugR38HnH5w9qMDuXZAHOAAzl3RXAcRfqoEN2+q7RA++gjGjYOXXgKPLAw0iPxBNirKo7YfCWXRxn/ZdeI8AEaDAZP54fIlO4OBuAff1ytXnP4t69CoYkCSNurUgb17VUEhAKNR1U/ZskW2IBbicQYMGMCyZcv477//qFIladGfsLAw/Pz8Er7v1KkThw8f5umnn2bOnDlc/fhjvEaMgHr10H9cwea9K2nRZgR/re5Es4ZGwAQGT7CrpAoKOTZFM6gcA10Hd3e1+zKoZb7u7vDaazByJHh5Zc/zF7mPBAN5THhEFP9bsZH1e05g0DTM6fjnjT/vqdrlGd+jOV6uzuzeDfXqJT1P09Qfm1mzYNQoKz0BIfKAq1evUr9+fcLCwhg0aBCVKlXi5s2b7Nmzhw0bNnAz0XbG3377LX369MHd3Z1mzZqxevVqNR/XpQt4eLB54kSa9+vHpk2baNasWZr3bt4cNm9OfnzgQPj8c4s9RZHHyDRBHhJ67RYD563gxj1VnCQ9gUDi89bvOcG/py7wxctPM2KEd5JznJ1VJdUWLVS5YSFE6goVKsSuXbuYOnUqP/30EwsWLMDHx4fKlSszY8aMJOd26tQJZ2dn7t69S69evdTBoCC1y1eHDmo75AyoWxe2b1c7KYMK4qtUUbspC5EaGRnIIy7cuE2fWd9xJ/I+JnPm/0mNBg1PFyfu7+jNzUueDByoNlyrWRPsJHQUInvdvg1PPw2bNsGnn8KLL6Z5yfffq/Lg8dzc4ORJKFzYiv0UuZ4sLcwDTGYzY79am+VAQLWlczvyPqXbr+PIUTNjx6p3GhIICJEDPD1h3To1xj9woMoITJT7k5JatdRnBwd4/32wt4chQ9K8TORzEgzkAUs27eHI+WtZDgTimcw6h85dZemmPRZpTwiRBfb2sGABzJkDM2dCjx4PMwRTULas2jBs1y4YOxaWLIHVq9WlQqRGpglyucjoWFq8uZComFiLt+3iaM9f04bg4mhv8baFEJmwZo2aA6hQQb3CFymSrsvefBPeew/++ktN+wnxKBkZyOV++++YVQIBUIHG7/8ds0rbQohM6NhRFfy4elUt99m3L12XTZ2qgoBnnoHLl63aQ5FLSTCQy63dfRRr7Risaap9IYQNqVFDrTQoXBieeEKNFqTBaITvvlOfe/V6uNJAiHgSDORiZrPOkXNX012wNKN0HQ6fv4rZQrkIQggLKVJEVf9q3Ro6d1b5BGnM+BYsCD/8ADt2yDJDkZwEA7nY+evh3I+Ns+o97sfEcfHGbaveQwiRCa6usHKlyhIcNUrVHU7jLX+jRiqR8IMP4KefsqmfIleQYCAXuxMVnS33uR15P1vuI4TIIINBLR344gv48ku1t3h4+GMvefVVVbpgwABVf0AIkGAgV7NWrkCy+2TXjYQQmfPii/DHH7B7t6peGBKS6qmapmKHwoWhe3e1CZkQEgzkIpMnT0ZL9Mr8VON6nP/zO6vft4Cb7IMqhM1r3hz++UftPV6/vtrfIBUeHvDjj3D6tKp2LAvMhQQDuZjRYMDOaN1/QjcnBwp7u1v1HkIICylfXgUEFSqojUS+S/3NQpUqsHAhLF6sRgpE/ibBQC52/PhxugwZhcFK4/gGTaN6Kf8koxFCCBvn6wt//qnWED77LEyZkupb/z59VN7hiBHw33/Z3E9hUyQYyMUcHR3p1qh6uncnzCizrtO5fmWrtC2EsCJHR1i0CN59FyZPVq/691NOBJ4zB6pXV1WOE+2sLPIZCQZs1LZt26hbty5OTk4EBgaycOHCZOcEBASwbO7/8HJ1JurqeQ7MH8XNo7uTnXf37DEOzB/FnZDD6b6/Bni7OtOiWpmsPA0hRE7RNFVQYPlytY6wZUsIC0t2mqMjrFgBd+7A88/Lhkb5lQQDNujgwYO0bt2aa9euMXnyZAYMGMCkSZP4+eefk51rMGiM7tIY50LFcfDw4fbJfcnOCT+5D6OjM+4lKqS7DzowumsT7O2MWXgmQogc17MnbN4Mp06pxMIjR5KdUrIkLF0Kv/6q9jAQ+Y9sTGuDJk6ciK7rbN26lRIlSgDQvXt3qlatmuL5HetVYv2eE1wtV5NrezYRdz8SOye1AsBsiuPOmYN4BFZFM6bvhd1o0AiqEECHuhUt84SEEDmrfn21jWGHDmrp4cqV8OSTSU556il46y14+211esuWOdRXkSNkZMDGmEwm1q9fT5cuXRICAYCKFSvSpk2bFK/RNI13n29LhXqN0c0m7pw+kPDYvXPHMUVH4VW2ZrrubzRoFPf1YlrfNpI4KEReUrIkbN8ODRtC27ZqKcEjJk1SQUDv3nDxYg70UeQYCQZsTFhYGFFRUZQtWzbZY+XLl0/1Oi9XZ358bwzufkUITzRVEH5yH0YnV9yKpT33rwFl/H35+tWeeLk6Z6b7Qghb5uGhNjZ66SUYOhRGjwaTKeFhoxG+/VblEfTsKRsa5ScSDOQhPu4uvDrkRSIvncYUFYE5zsSdkMN4lqmGZkh9isBo0DBoGgPb1Ofb0b0p4C5FhoTIs+zsYP58mDcP5s6Fbt3g3r2Eh/38VELh7t3w+us5102RvSQYsDF+fn44OztzMoWi4cePH0/z+mef7Y3ZZCLmH2fu7YvEHHMfr7I10dASXvTjPwM42hvp1rAqK8f3ZUT7IEkYFCK/ePllNUqwcSM0bgwXLiQ81KABzJqlYoUVK3KuiyL7aLouhShtTdeuXfn99985fvx4Qt7A0aNHqVq1KiaTifh/soCAAJo1a8aiRYuSXF+2bDVOnfIlKKgQp09vIcJhO31fCsOnxC1i40zY2xkJKOhNpeKFqBbgj6uTQ3Y/RSGErTh4UCUWxsXB6tVQuzag6hQ9+yysXatGCSqkfzGSyIUkGLBBBw4coH79+hQsWJBhw4YRFxfH/PnzKVSoEAcOHEgzGKhc+V2OHJmIi4sTrVq9yC+/zOPYMVWpVAghkrlyBTp3hkOHVNJAly6Amj2oW1flEuzcqXZNFnmTTBPYoGrVqrF+/Xr8/PyYOHEiX331FVOmTKFr165pXnv0KBw50gswExkZSYECvShQAMqVs36/hRC5VOHCqhZB+/Yqh2DmTNB13NzUhkahoTBkiGxolJfJyEAeM2CA2sn0zBmVEdy6NTg4qKE+IYR4LLNZFRr43/9g4EBYsADs7fnuOzVlsGCBWogQT487gx61FmL3Q+wh0O+qBwxeYF8Vzb4GOHVEsyuWE89GZIAEA3nIuXMQGAgzZsCoUWrFUIECMG6cqkoqhBDpsngxDBqkEgtXrgRvb15+WZUm2LYN6tbYj35vFsT8AxgBM6puaWLagw8dHJqguY9Bs5e5Slsl0wR5yKxZ4O6ufodBVR29c0cVHBNCiHTr10/tfLhvnypSdPo0s2ZB/Xox/Lt5JuabPSEmfh8UE8kDAR4cexAkxGxDv9EF/d4CdD0uu56FyAAZGcgjwsJUgbGxY9WOpaCi+OHD4fZtSfwRQmTCyZNqpcGNG+irvud+6cXYswuDIQsvG45PonnNRdNkFZMtkZGBPGLePLVJ2SuvPDy2Y4famlQCASFEppQtCzt2oFergn5pAI5aFgMBgOi/0MNfR96H2hYJBvKAu3fho49g8GDw8Xl4PDhYpgiEEFlUoAD8/Aw0dgbNEi/gOkT/ClE/WaAtYSkSDOQBCxdCRIQqMx4vLEyN8EkwIITICj0uBD1qnsoFtGS7d6eim65atlGRaRIM5HLR0TB7NvTtC8USrd755x/1uWHDnOmXECJv0CO+JOUEwaw2HI0e+a3l2xWZIsFALrd4sSoe9uiGIsHB4O+vkgqFECIzdPMdiFqFWjFgaWaI/A5dj7FC2yKjJBjIxeLi4P33VcGwR0sNx+cLaBYe2hNC5CMxwYAVX6z12xCzx3rti3STYCAXW7kSTp+GCROSHo+NVRuLyBSBECIr9NiDgJ0V72CAuMNWbF+klwQDuZSuw3vvQatWCZuMJdi/H6KiJHlQCJFFsSewzhRBPA09Nu2t2YX1WTPkE1b0++/qRX/jxuSPBQer/Qhq1cr+fgkh8hD9LlZJHkxgBj3Ciu2L9JKRgVxq+nSoXx+aNUv+WHCwGi1wdMz2bgkhMiA0NBRN05JtQ55VkydPRrNEwpBm7feLWjbcQ6SHBAO50PbtsHWryhVI6fd9xw6ZIhAir4uMjGTy5Mls3rzZejcxFEVtRGS1G4DB34rti/SSvQlyoQ4dICQEDh4EwyPh3IULULy42oO8W7ec6Z8QIn10XSc6Ohp7e3uMxoy96F6/fh0/Pz8mTZrE5MmTkzwWFxdHXFwcTk5OWetfxDfod9/FmlMFmudsNOcOVmtfpI+Mz+QyBw7AunWqvsCjgQCoUQGQlQRC5AaapmX5BTsldnZ22NlZ4M+7Qx2smzMAONS0bvsiXWSaIJeZMUMVEurdO+XHd+yAgABVcEgIYX3x8/MnTpygT58+eHp64ufnx9tvv42u65w/f57OnTvj4eFB4cKFmTVrVsK1KeUM9O/fHzc3Ny5evEiXLl1wc3PDz8+PMWPGYDKZEq7z8/MDYMqUKWiahqZpCSMEKeUMaJrGiBEjWLFiBZUqVcLZ2ZmGDRty8OBBABYuXEiZMmVwcnKiWbNmhIaGgl1FsKtA/EvFzj33ear3RbzLncat1Cmad73A9l1RmfzJGcGhEZqxaCavF5YkwUAucuYMfP89jBkD9vYpnyObEwmRM3r16oXZbOa9996jfv36TJs2jblz59KqVSuKFi3KjBkzKFOmDGPGjOHvv/9+bFsmk4k2bdrg4+PDBx98QNOmTZk1axafffYZAH5+fnzyyScAdO3alSVLlrBkyRK6pTE3uHXrVkaPHk2/fv2YPHkyR48epUOHDnz88cfMmzePYcOGMXbsWHbs2MELL7ygggyX/oCZjdsiadb1AnfvmZk4qgDvTvAh/I6JJ5++yK699zPxEzOhuTyfieuEVegi1xg6VNf9/HQ9IiLlx6OidN3eXtc/+ih7+yVEfjZp0iQd0AcPHpxwLC4uTi9WrJiuaZr+3nvvJRy/deuW7uzsrPfr10/XdV0PCQnRAf3rr79OOKdfv346oE+dOjXJfWrWrKnXrl074fuwsDAd0CdNmpRqnxIDdEdHRz0kJCTh2MKFC3VAL1y4sH7nzp2E4xMmTNABPSQkRDeb4/S4sB562dL2eutmLnrcpTK66XJZ3XS5rH7vTKBeqoSd/mQTl4Rj6fuooJtuDNTNZnNGftTCimRkIJe4cgW+/hpGjgQXl5TP+e8/VX1Q8gWEyH4DBw5M+NpoNFKnTh10XefFF19MOO7l5UX58uU5c+ZMmu0NHTo0yfeNGzdO13WP07JlSwICAhK+r1+/PgDdu3fH3d092fEzZ86gaUb2h/Tj5JlYenf14MZNM9dvmLh+w0REpE6LJ1zYujMKszm9uQUG0JzRPKdZZvmjsAhJIMwl5sxRhYSGDUv9nOBgFShUq5Z9/RJCKCVKlEjyvaenJ05OTvj6+iY7fuPGjce25eTklJATEM/b25tbt25ZvI8AxYsXT/F4/P1OhUQCMODVK6m2ffuOGW+vtFZEGAB7NO8v0IyFMtBzYW0SDOQC4eHwySfw0kvg5ZX6ecHBqhCRJZKIhRAZk9LSwNSWC+pprOjO6DLD9Eqt3bT6aTabAXh/+jCqB/4BejRgTnKum2taA80GMHijeX2K5lA9Q/0W1icvG7nAggUQEwOvvZb6ObquVhIkGpEUQuRh2TnEHhgYCIBngeq06jYF/c5EiN6AKkiU1t4FD85x6oTm8SaawdPKvRWZITkDNigmRs37jxgBx47B3LkwYAAULpz6NSEhcPWqrCQQIr9weZA8FB4ebvV71a5dm8DAQD744AMiopwweC9A81kJTp0BB8Kuxz0400DSlxVncO6F5rMGg9f7EgjYMBkZsEEREfDPP+pjwQL1rr9Ll8dfExysPjdoYPXuCSFsgLOzM5UqVWL58uWUK1eOAgUKUKVKFapUqWLxexkMBr744gueeuopKleuzIABAyhatCgXLzqxaVMBPNz8WL3iZdBvoaYDCjDlf5WJuF+KmTOtWc5YWIoEAzbIweHh17qu9h9o2xY6dYIlS8DDI/k1wcFQoQL4+GRfP4UQOeuLL77g5Zdf5rXXXiMmJoZJkyZZJRgAaNasGTt27OCdd97ho48+4t69exQuXJj69eszZMgQNJcWCefqOrw3E6Kj4cknoU0bq3RJWJDsTWCDYmOTBgSgAgJ7e1WOuHz55NfUrKk+vvoqe/oohBCpOXkSypVTX7u6wp49D78XtklyBmzQo6sBjEYoVgx27Uo5ELh7VwUJki8ghLAFW7Y8/Pr+fWjXDm7fzrn+iLRJMGCDNE0FAPFatoR9+6B6Kqtxdu0Cs1mCASGEbdiy5eGbGpMJQkOhZ0/1tbBNkjOQA+JMZkKu3uTYhWuER9xHA7zdnKlYvCAlC3pjNBiIn7x5+22YPDnlHQrj7dih6g9UqJANnRdCiMfQdfjzT4iLe3jMZII//oDPP4dHCisKGyHBQDY6cu4qy7fu57c9x4iOVSGy4cFaYfODV38XR3s61q3Ek52r0amlL8OHp91ucLBaRfC4gEEIIbLD2bNqmXNiFStC06YqmVDYJgkGssGNu5G8+8Nf/LX/FEaDhilRDW/zI/mbkdGxrAw+gKnYfq56VuJOZFM8XFLf79xsViMDo0ZZrftCCJFuBQpA//5QqpR6g/L227Bunfpe2C5ZTWBlO0+cY/SXa4mMjkkSBKSHQdPwdnNm3uDOVCmZcsWho0ehUiU1LCdRtxDClly/Dn5+8O238OyzOd0b8TgysGxFwUfPMmzBz0Tcz3ggAGrU4Na9KF6ct4IDIZdTvkewir7r1ctqb4UQwrJ8fdWSwviiaMJ2STBgJWev3eLVz3/BpJuTTQVkhFnXiYkz8dInPxF2+16yx4ODoWrVlAsRCSFETgsKkmAgN5BgwApMZjNvLf0dk9mMJSZhzLpOVEwsU7/fkGy3sx07ZEmhEMJ2BQWpOij3kr+XETZEggErWLf7KAdCr2RqaiA1JrPO34dD2HokJOHYzZsqZ6BhQ4vdRgghLKphQ7W0cPfunO6JeBwJBqxg6ea9GKywu6jRoPHdln0J3//zj/osIwNCCFtVqZKaxpSpAtsmwYCFHbtwjeMXw7DgoEACk1lnx7GzXL55B1C/XAULQunSlr+XEEJYgsGgRgckGLBtEgxY2N4zl9CsMCoQTwf2h6qVBTt2qF8ya95PCCGyqmFDNZJpNud0T0RqJBiwsCPnr2LQrPdjtTMYOHr+KnFxsHOnTBEIIWxfUJDKcTpxIqd7IlIjwYCFXbpxB5MVw1+zrnPp5l0OHoSICAkGhBC2r359NYIpUwW2S4IBC4szWXccTNd1TGYzO3aoXcFq17bq7YQQIss8PFQ9FAkGbJcEAxbm6uSQ8PW9C6c4MH8U4af2W6x9g0HD1dGB4GCoVQucnS3WtBBCWI0kEdo2CQYsrFxRX+ysuH2grkOZIr4EB0t9ASFE7hEUpOqi3LqV0z0RKZFgwMIqFS9EnJVzBgq7FiQkRPIFhBC5R/zfq/j6KMK2SDBgYQ3Kl8Dezmi19j1cHLlzwR+QYEAIkXsEBqqNi3bsyOmeiJRIMJCCu3fvMnLkSAICAnB0dKRgwYK0atWKPXv2ABAQEED//v2TXdesWTM6tWtLh7oVMSYuQWg2czl4HUe+nMTBT8YTsvZLYu5mfKzMoGk83agau/6xo3hxKFYss89QCCGyl6bJpkW2TIKBFAwdOpRPPvmE7t27s2DBAsaMGYOzszNHjx5N1/X9WtQGHgYD1/7dwN3QI/jVaoFv9Se4d+44Z1Z9ijkuJkP9crS3o1fjGrI5kRAiVwoKUvVRTKac7ol4lF1Od8AWrVu3jkGDBjFr1qyEY6+//nq6ry9VqADD2zfkf5+oChum+5GU6zMOo4MTAM5+xTj3+zfcPPwPvtWbpLvd17s3w8vZjX//haefTvdlQghhExo2VLsXHjoE1avndG9EYjIykAIvLy927tzJpUuXMt1GvxZ1qFC8oGqvQp2EQADAs0x17Fw9uBOavpEGTYNWNcrStUFl9u6F6GgZGRBC5D516qj6KDJVYHskGEjB+++/z6FDhyhevDj16tVj8uTJnDlzJkNt2BkNvNxevWI7efsleUzTNBw9fYm9k3begAY0rVKa6c8/haZp7NihagvUqJGh7gghRI5zcYGaNSUYsEUSDKSgZ8+enDlzhvnz51OkSBFmzpxJ5cqV+e233wD1Yp4S0yMTYU4O9gA0qlgSTVMJgOll0DSMBo2X2jVk1gsdE1YoBAer6NrePjPPTAghclZQkKwosEUSDKTC39+fYcOGsWrVKkJCQvDx8eHdd98FwNvbm/Dw8GTXnD17NsW2SrkZWDyyFzVLFwHAoEH07evYe3gnOzc+YLh7rgSfDn6OIW0bYGdU/0y6roIBmSIQQuRWDRvC6dNw9WpO90QkJsHAI0wmE7dv305yrGDBghQpUoTo6GgAAgMD+eeff4iJebgaYO3atZw/fz7FNr/55htK+7rz1as9WfVmP2q5RBAXcYeCZatiMKgRAG9XZ+6dDaCmdwOWvvwCl9Z349cfkk4vnDsHly5JMCCEyL3i/37J6IBtkdUEj7h79y7FihWjR48eVK9eHTc3NzZs2MDu3bsTVhcMHDiQlStX0rZtW3r27Mnp06dZunQpgYGBKbZZoEABnnjiCQYMGMDVq1dZNncuZcqUYf/qxbi4uCSc16gRRB2HqmVh0CCYNw/GjAE3N/V4/C9PgwZW/REIIYTVxNdI2bEDunTJ6d6IeDIy8AgXFxeGDRvGvn37mDRpEq+99hrHjx9nwYIFjBo1CoA2bdowa9YsTpw4wciRI9mxYwdr166lWCpVgN544w3at2/P9OnT+fDDD2nZsiV//fVXkkAA1PBZ/Av+6NFw9y58/vnDx4ODoUwZKFjQKk9dCCGyhWxaZHs0Xdf1nO6EUH76Cbp3hwsXoGhRGDAA/vxTza85OqrEwcqVYfHinO6pEEJk3ty5MH483LkDDg5pni6ygYwM2JD4XQjjRwfGjVM5AkuXQkQE7NsnOxUKIXK/oCBVL2Xv3pzuiYgnwYAN8feHgICHwUCFCtC1K8yY8bCEpyQPCiFyuxo1wMlJkghtiQQDNubRjTzGj4eTJ+GLL8DdXU0TCCFEbubgoKY9JW/AdshqAhsTFAQrVsD9+ypyrlsXWraEdeugXj0wWm93ZCGEyDZNm0RyaN9R9IjD6OZbgI5m8AL7SmBXCc3gltNdzFckGLAxDRtCbCzs2fNwSmD8eGjVCgoXztm+CSFEVui6DrH/okd8y+QR6zFoJsx3NTTUuxwdM2AGNHTHFmgufcAhKNWqr8JyZJrAxlSrpup3Jx4+K15cfT54MGf6JIQQWaWbrqGHD0W/+RxEq0AAQEMH4h58mOPPhujN6LcGoN/qix53IYd6nX9IMGBj7Oygfv2kwcA//6jPBw48/FoIIXILPXoH+vW2EP33gyOmx56f5JyY/9Cvt0O//6e1uieQYMAmxScRxleACA6GSpWgYkWYPj1n+yaEEBmhR29Hv/Ui6BGkLwh4lAmIRg8fgX7/dwv3TsSTYMAGNWyoNvEIDVXfBwerUsXjxsHq1XDoUI52Twgh0kWPO49+6yXU8H9W6tupa/XwUeixxyzRNfEICQZsUPzeA8HBcPs2HD6sRgt691b5AzNm5Gz/hBAiLbpuRr89HojlYS5AlloEdPTbr6PrsRZoTyQmwYAN8vFRBYeCg1WxIV1XowUODmrjou++g5CQnO6lEEI8RvQfELubzE0NpMYEcccg6kcLtilAggGbFb9pUXAwFCgA5cqp4wMHgrc3PNhAUQghbJIe8Q3WeYnR0CMWI9vqWJYEAzYqKAj274etW9XX8ctsXVzg1Vfhyy9VXoEQQtgaPe4cxP6LZaYHkrUOptMQe8AKbedfEgzYqKAgMJvVUsJHNycaPlwtQfzww5zpmxBCPFastXcg0iB2n5Xvkb9IMGCjKlRQexFERibfnMjbG156CT7+WCUYCiGELdFjD2PdArcG9FhZVmVJEgzYKIMBSpRQX9etm/zxkSPV/gWffJKt3RJCiLSZr2LZxMFHmcB82Yrt5z8SDNgwe3u1MZGzc/LHihSB/v1hzhyIisr2rgkhROp0awYC2XiPfESCARsWFgYmE5w4kfLjr78O16/D119nb7+EEOKxDG5Y9+VFA83Diu3nPxIM2KiwMLh4Ua0iSG3P78BA6NkTZs6EuLjs7Z8QQqRGs6tAahUHl/10hw8/u5XFOxjBvmIW2xCJSTBgo+I3JIovPpSa8eNV2eLly7OlW0IIkTb7yqS2rPC7n+/y4efhWbxBHJp95Sy2IRKTYMBGBQeDvz80bfr4YKB6dWjXDt57Ty1FFEIIS4mIiMjchfY1wOBj0b4koTmDQ1Da54l0k2DARgUHqyWFQUFw9Cjcesyo2oQJavOideuyr39CiLxl8uTJaJrGkSNHePbZZ/H29uaJJ54gLi6Od955h8DAQBwdHQkICOCNN94gOjo6WRsLFiygcuXKODm5Uaz6EUZMCCP89sNEvxbdLvDrhkjOXojD6H8So/9JStfNaG11Izj3QDO4ZvEZi8QkGLBBsbGwe7cqNhRfYyB+2iAlTzyhdjWcPv3htsdCCJEZTz/9NJGRkfzvf/9j0KBBDBw4kIkTJ1KrVi3mzJlD06ZNmT59Os8880yS6yZPnszw4cMpUqQIs2bNolv3nny2JJy2z1wkNlb9YZrwqjc1qjjiW8DI4vmFWDy/ELOn+mWwh3ZoLgMs9GxFPGtWhRCZtH+/Wi4YFASlS0PBgmqk4KmnUr9mwgTo0AH+/ltNLQghRGZUr16dZcuWAbB//36GDx/OwIED+fzzzwEYNmwYBQsW5IMPPmDTpk00b96csLAwpk+fTuvWrfntt98wGNT7zAqBdrw86lOW/niHAc940qqpK/O+COdWuIk+PTK3GkBzH4dmV8wyT1YkkJEBGxQcrHYorFVLrSaI37Tocdq1g2rVVO6AEEJk1tChQxO+/vXXXwEYNWpUknNGjx4NwLoHc5MbNmwgJiaGkSNHJgQCAIOGzcXDw5FfN0RaoGcaOLYCl2ct0JZ4lAQDNmjHDqhTBxwd1fdBQWor48ctH9Q0tbLg999hr7XLggsh8qxSpUolfH327FkMBgNlypRJck7hwoXx8vLi7NmzCecBlC9fPsl5jo6OlC5dkXOX3LLeMcfmaF5z0DR52bIG+anaoODgpJsTBQXBvXsqSfBxnn5aTSvI6IAQIrOcUyh5qsVvm5pZxmJo7hMBByAjbRkBOzS30WheH6FpDlnrh0iVBAM25uJFOHcu6eZEtWurXQrTmiqws1NVCVeuhJMnrdtPIUTeV7JkScxmMycf+YNy9epVwsPDKVmyZMJ5AMePH09yXkxMDCEhIZQsWRLNtQ+a769oxkKogEBDvdg/yoh6aTKAY0s0n1/Q3IagaZLiZk0SDNiAsDC1GqBfP5g6VR2rV+/h487OKn/gcfUG4vXrpxIO33/fOn0VQuQf7dq1A2Du3LlJjs+ePRuA9u3bA/Dkk0/i4ODAvHnz0BMtafryyy+5fft2wnmaXQncvOpy+54LmsdEcOoExlKgeYHmCcaS4NQezX0Cmt8WDN4fodmXtf4TFbKawBbExakX+h07Hi4NLF8eGjRQywXr1VMjBatXp92WkxO89hq89RZMngxFi1q160KIPKx69er069ePzz77jPDwcJo2bcquXbtYvHgxXbp0oXnz5gD4+fkxYcIEpkyZQtu2benUqRPHjx9nwYIF1K1blz59+iS0Wbt2bZYvX87ot/6jbt26uLk9QceOHXPqKYp4urAJAQG6rkKBpB/ff68eX75cfX/lStpt3b6t615euj5qlHX7LITIOyZNmqQDelhYWJLjsbGx+pQpU/RSpUrp9vb2evHixfUJEybo9+/fT9bGRx99pFeoUEG3t7fXCxUqpL/00kv6rVu3kpxz7949/dlnn9W9vLx0QC9ZsqQVn5VIL03XpUyNLRg4EBYvfrhiwGCAAQPg88/VSoELF6B4cfj5Z+jSJe323noL5s5V+QcFCliz50IIIXI7yRmwEc2aPQwEjEY1NbBggQoEAIoVU8FAevIGAF59Ve1V8NFHVumuEEKIPESCARuRuGqgnx+sWqUKDyUWFJT+YMDPT402zJsHmd1rRAghRP4gwYCNKF5crRrQNLXhUKFCyc9p2BD+/RdiYtLX5ujRcPu2mmoQQgghUiM5Azng6q27HDp3lWMXrnE74j5oUMDNmSO7ChLgU5hRI1LejWv3bjV98M8/UL9++u7Vrx9s3AinTycfaRBCCCFAgoFsE2cys2H/SZZt2cv+kMsAGA2GhJwAXdcxmdU/Rf1yJejdpAZNq5TGYHhYrSs2Fjw94d131fLB9DhyBCpXhi+/hBdesOhTEkIIkUdIMJANTl66zptLfuf4xTAMmoY5jR+50aBhMuvULF2Ed55rQ3E/r4THmjSBwoXhhx/Sf/+uXVVQcOSISk4UQgghEpOcASv7Zedher2/lFOXrwOkGQgACSMEB0Iv0236N2w8cCrhsaAg2L79YXGi9JgwAU6cUEmJQgghxKNkZMCKftpxiCnf/ZmlNjTUJiEzX2jPk9XLsno1dO4MZ89CiRLpb6dlS5VMuHv3w+WKQgghBMjIgNUcCL3M1O+zFggA6Kh8gnGLfiXk6k0aNFDH09q06FETJsB//8GGDVnukhBCiDxGggEriI6N481vfs/6tp8PxAcEby75HR9fM2XKpL/eQLyWLdXuh9OnW6RLQggh8hAJBqxgxbYDnL8ejtlsuRkYk1nn8Lmr/P7f8QwVH4qnaWp0YNMm2LnTYt0SQgiRB0gwYGFms86yv/dapW2DpvHd3/to2BD27YPIyIxd37Wr2g1RRgeEEEIkJsGAhe0PvcTFG3ewRlamWdc5ePYKpSrdJC5OJQNmhMEA48bBL7/A4cNW6KAQQohcSYIBCzsQchmDldP1o+wv4+6e8SRCgOeeU5sevf++5fslhBAid5JgwMKOXrhm1aV7dkYDxy5eo0GDjOcNgCpJPGYMLFumlicKIYQQEgxY2LXwewlFg6zBZDZz424kDRuqkYHMVIkYOFCVNf7gA8v3TwghRO4jwYCFpafCYJboYDabCQqC69fh1Km0L3mUqyu88gp88QVcu2b5LgohhMhdcl0wsGjRIjRNIzQ0NM1zAwIC6N+/v9X7lJini5NVpwkMBg13Zyfq11fLBTMzVQAwYgTY2cGHH1q2f0IIIXKfXBcM2LryxfysmkBo1nXKF/PDywsqVcp8MFCgAAwZAh9/DHfuWLSLQgghchkJBiysUvFCVs0Z0HWoXLwQoDYtysyKgnijRkFUFHz6qYU6J4QQIleSYMDCGpQviauTg9XaL+TlRuWSD4OBQ4fUBkSZUaQI9OsHc+bA/fsW7KQQQohcJduDgbNnzzJs2DDKly+Ps7MzPj4+PP300ynmABw+fJgWLVrg7OxMsWLFmDZtGmazOdl5uq4zbdo0ihUrhouLC82bN+dwJqvqxMXF8c477xAYGIijoyMBAQG88cYbREdHJzkvICCADh06sG3bNurVq4eTkxOlS5fmh++X0T2oKkbDw6kCU3QUl/7+maNfT+Xgx2M59s27XPvvL3Q9+XN5HE3TeKZxDYwG9c/WsKEaKchKeeGxY1US4aJFmW9DCCFE7maX3TfcvXs3wcHBPPPMMxQrVozQ0FA++eQTmjVrxpEjR3BxcQHgypUrNG/enLi4OMaPH4+rqyufffYZzs7OydqcOHEi06ZNo127drRr1449e/bQunVrYmJiMty/gQMHsnjxYnr06MHo0aPZuXMn06dP5+jRo/z8889Jzj116hQ9evTgxRdfpF+/fnz11Vf079+fzcE7WWlvR1R0LKbYGE7/+BGxEXfwqdIQe3cvIi+HciX4V+Ii7lCkSdd09UvTwNvViR6NqiYcK1dOzf3v2AGtW2f4qQJQtiz06KGKEA0cqJIKhRBC5C/Z/qe/ffv29OjRI8mxjh070rBhQ3788Uf69u0LwIwZMwgLC2Pnzp3Uq1cPgH79+lG2bNkk14aFhfH+++/Tvn171qxZk7BT4Jtvvsn//ve/DPVt//79LF68mIEDB/L5558DMGzYMAoWLMgHH3zApk2baN68ecL5x48f5++//6Zx48YA9OzZk+LFi7N65XLGPz2Aid/+Qdi+LcTcuUHZZ0bj6OUHgE+VIOxcPQjbsxnfms1wcPdOs2+6Dm/0aI2Hi1PCMU0jU5sWPWr8eKhVC374AZ59NmttCSGEyH2yfZog8Tv72NhYbty4QZkyZfDy8mLPnj0Jj/366680aNAgIRAA8PPz47nnnkvS3oYNG4iJieHll19OsmXwyJEjM9y3X3/9FYBRo0YlOT569GgA1q1bl+R4pUqVEgKB+P6VL1+eM2fO0KleJTrXq8Ttk/tw9S+N0dGZuKh7CR9uxcuBbibi0pl09e3WgdpMGFyaS5eSHm/YEP75B1KYPUm3mjWhbVt4773MFTESQgiRu2X7yEBUVBTTp0/n66+/5uLFi+iJXn1uJ8qEO3v2LPXr1092ffny5ZN8f/ZBTd1HRwz8/Pzw9k77HfejbRkMBsqUKZPkeOHChfHy8kq4V7wSJUoka8Pb25tbt26haRoTe7di+os3uX/jMke+mJjiPeMi76XaHw3QgT7NatGyf2M6dYL69WHtWqheXZ0TFKSWBh45AlWqZOjpJjFhAjRtCuvWQYcOmW9HCCFE7pPtwcDLL7/M119/zciRI2nYsCGenp4qMe6ZZ1JMDswJWjrrBBiNxhSPxwc4dkYDRg0q1W1AdInaxJlNyd7BO3r7pdy2QcPZwZ63erWkba3yaJrGzp3QqRM0agTffQcdO0LdumA0qqmCrAQDjRurwOK99yQYEEKI/Cbbg4GVK1fSr18/Zs2alXDs/v37hIeHJzmvZMmSnDx5Mtn1x48fT3YewMmTJyldunTC8bCwMG7dupWhvpUsWRKz2czJkyepWLFiwvGrV68SHh6ecK+MCAwMxNVO47fP/scXf+xi7e4jRMeasDMaiDMljQzsDAbizGZcHO3p2qAKL7Sqi6+Ha8LjRYvC339Dnz7QuTPMng2vvgo1aqhgYPDgDHcvgaap3IFOnWDrVhUcCCGEyB+yPWfAaDQmmRoAmD9/PiaTKcmxdu3a8c8//7Br166EY2FhYXz77bdJznvyySext7dn/vz5SdqdO3duhvvWrl27FK+dPXs2oJIfM6pnz57s2LGDg7t3MPGZJ/lr2hCm9WnD042qUb6QO0W83Cjh60XN0kV4pkkN3uvXjr+mDeH17s2SBALxXF3hxx/VzoOvvQbDh6upg6wmEarnp0YXpk/PeltCCCFyj2wfGejQoQNLlizB09OTSpUqsWPHDjZs2ICPj0+S815//XWWLFlC27ZtefXVVxOWFpYsWZIDBw4knOfn58eYMWOYPn06HTp0oF27duzdu5fffvsNX1/fDPWtevXq9OvXj88++4zw8HCaNm3Krl27WLx4MV26dEmykiC9xo4dy+rVq+nQoQP9+/endu3aREREcOzgQX5duZLQ0NAM99NgUEsBy5WDl16CihXh5Em1cVEGm0rW7vjxauRh3z414iCEECIf0LPZrVu39AEDBui+vr66m5ub3qZNG/3YsWN6yZIl9X79+iU598CBA3rTpk11JycnvWjRovo777yjf/nllzqgh4SEJJxnMpn0KVOm6P7+/rqzs7PerFkz/dChQym2mZbY2Fh9ypQpeqlSpXR7e3u9ePHi+oQJE/T79+8nOa9kyZJ6+/btk13ftGlTvWnTpkmO3b17V58wYYJepkwZ3cHBQff19dWDgoL0Dz74QI+JiclQ/x61YYOuu7vrOuj6Z59lqSld13U9NlbXS5XS9V69st6WEEKI3EHTdVlMltsdPQpVq4KjI2zYoJYbZsUnn6hdDY8fh0cWVgghhMiDZG+CPKBiRXjqKVU9sHlztdIgKwYMAD8/NRUhhBAi78s3wcCVK1ce+3E7s7v92IjmzSEmBrp3V1UEp07NfAEhJyeVnLh4McmKHAkhREpMZjMR92OIjI7BbMWdW4V15JtpgrRqB/Tr149FuXi3nh07VJ2AXbtg/Xp4+2147jn44gv14p5Rt29DiRJqueLMmZbvrxAid9N1nQOhl1n37zEOhFzm5OXrCculHeyMlCvqR41S/nSoW4mKxQvmcG9FWvJNMLBhw4bHPl6kSBEqVaqUTb2xvOho8PBQL9yvvALLl6vtievUgZ9/VsP+GfXGGzB/Ppw7Bxks5iiEyMO2Hw1l9qq/OXX5BkaDAVMqBeOMBg2TWadyiUKM6dqUWoFFs7mnIr3yTTCQHzRqpN7Nx+cM/POPKk7k5qZKGCeqo5Qu165ByZIqKHj7bcv3VwiRu0RGxzDjx82s+ucwBk3DnM6Xj/hz+zSrySsdn8DRXrZHtTX5JmcgP2jYMGnxoQYNYOdOcHZWj6UxOJJMwYLw4ovw4YcQEWHZvgohcpc7kfd54cMVrN55BCDdgUDic7/dso9hn/xMZHSsVfooMk+CgTwkKEgN6V+8+PBYQABs364Cg7Zt4bPPMtbmmDEQHq5yD4QQ+VNsnIlhn/zM8UthGQoCHqXrOntOX2T0l2skydDGSDCQh8TXF9ixI+lxT081TTBkiPoYMwYeqf6cqoAAtTph1iy1WkEIkf98tn4nh85escgLuFnXCT52lu+27st6x4TFSDCQh/j7Q6lSKe9TYGcHH32khvznzFFLENM79D9uHJw/D8uWWba/Qgjbd+JiGF/8sQtLv4+f88tWLt7I3Uu68xIJBvKYR/MGEtM0tdJg9Wr46y+1M2HiKYXUVK6sdjOcMYNkWzALIfK2RX/9Rzp3dc8Qs9nMd3/vs3zDIlMkGMhjgoJgzx64fz/1c9q3h23bICwM6tVT56dlwgQ4dgxWrbJYV4UQNu7WvSjW7zmOyQrz+yazzo/BB4mKkWRCWyDBQB4TFASxsfDff48/r3p1VaCoSBE1QvDLL48/v0EDaNZMbW8si1GFyB/+OX6OOCsOB0ZGx7I/RMqc2gIJBvKYqlXB1TX1qYLE/P1hyxa1r0HXripJ8HEv9BMmwL//qikGIUTed/T8VewM1nuZMGgaR85ds1r7Iv0kGMhj7OzU0H96ggEAFxf44QeVJDhmjFptEJvKqF2rVlCrlhodEELkfScvX7fqyICmwanL163Wvkg/CQbyoKAgtbwwvcP5BoN6gf/qK1i0SI0U3LqV/DxNg/HjYeNGNcUghMjbIu9bdz7fbNaJiomz6j1E+kgwkAc1bAhXr0JISMauGzAA/vhDJRQGBcHp08nP6dYNypWD996zTF+FEJYxefJkNE3j+vXHv9MOCAigf//+6WrT3s66LxGapln9HiJ95F8hD2rQQH1O71RBYs2aqT0NTCaoX1+tOkjMaITXX1ebHx09muWuCiFsWDEfL4xWzhkoUsDDau2L9JNgIA/y8YEKFZJXIkyvcuXUtVWqQMuWsHRp0sf79oWiRVXdASFE3lWpeEHMVswZiDObqVS8kNXaF+knwUAe9bjiQ+nh46OmDJ59Vr34T5z4MAfBwQFGj4Zvv1V7IQgh8qZaZYpavPJgYpoGNUoXseIdRHpJMJBHBQXBgQNw927m23BwUEmF06fDO++owCC+mNGgQeDhAR98YJn+CiEs4/r16/Ts2RMPDw98fHx49dVXuf+YKmTxuQaPWrRoEWWL+FHaw4gh0eN3Qo9yauV8Dn4ynkOfTiBk9efcv3Elw/00GjSaVi5NQU+3DF8rLE+CgTwqKEiVDs5q1n/8CoIVK1T1wRYt4No1cHODl19WuxmGhVmky0IIC+jZsyf3799n+vTptGvXjnnz5jF48OBMt9elQeWEnQpvHfuX0DVfYLR3xD+oPQXrtuL+rauc/nE+MXduZqhdk1nn2WY1M90vYVkSDORRFSqAl1fm8wYe1aOHKlB05oxKLDx8WAUDBgPMm2eZewghsq5UqVKsXr2a4cOHs2TJEoYNG8aSJUs4cOBAptprUrk09cuVgLgYLv39MwUq16dU58H4Vm9MwdotKPP0q+i6zrV/N6S7TaNB46na5VW7wiZIMJBHGQxqVcG2bbB3L3zySdolitNSr54aaXB3VyMP//4Lgwer3RDv3LFMv4UQWTN8+PAk37/88ssA/Prrr5lqT9M0pj7XmvuXTmGKjsKrXE3iou4lfGiahkvhkty7cCpd7RkNGh4uTozv0TxT/RHWYZfTHRCWt20brF+vNhYKDVVfA7z4ohrWz4oSJWD7dnjmGbXh0dSpaivkhQth7Ngsd10IkUVly5ZN8n1gYCAGg4HQ0NBMt1nY25225QtyAjjz8ycpnmNwcEqzHaNBw9nBns+Gd8fL1TnT/RGWJ8FAHhMbq5YDxsQkfyy+/kBWuburjY1Gj4Y331RbHM+apaYNnNL+eyCEyEYpJQem53GTyZTk+8Je7gBU6jSAaIMjj25kqKVRj0DTNPy9PZg3uDOB/j5p9FpkN5kmyGPs7VPP8G/a1HL3sbODDz9UUwRHj6qKhwsXWq59IUTmnDx5Msn3p06dwmw2ExAQkOL53t7eAISHhyc5fvbsWUAtKV6zBubNCwSgrk83nu/VDfcS5fAKKI97iXK4lyiHW7EyKbZv0DQ0Dfo2r8WPE56XQMBGSTCQB40YAS+8oPIG4vn5QZmUf1ezZPhwWLdOBQevv57xEshCCMv6+OOPk3w/f/58AJ566qkUzw8MVC/yf//9d8KxiIgIFi9eDECbNtCpE1y50gbw4PDBD5jQvRlr3h5An2a18HZTw/1xUfeSte3n4cqLrevx++SBjO7SBCcHGYy2VfIvkwdpGixYAEeOwM6dKrJv0UIdt4a2bVUBol691K6Gf/4JdepY515CiMcLCQmhU6dOtG3blh07drB06VKeffZZqlevnuL5rVu3pkSJErz44ouMHTsWo9HIxx9/xdWrfsA5TiXkBXpgNH7Cnj19qVWrFs888wx+fn400s6zevNaylWuzoCB49A0DW83ZyoWK4iPh2t2PW2RVbrIs65c0XUvL10HXf/gA+vfr2lTXXdx0XVnZ13/8Ufr308I8dCkSZN0QD9y5Ijeo0cP3d3dXff29tZHjBihR0VFJZxXsmRJvV+/fkmu/e+///T69evrDg4OeokSJfTevWfr8LUO6BCiq7cUul67tq5v2rRJb9Omje7p6ak7OTnpgYGBev/+/fV///03m5+xsCRN19O70a3Ijf74A7p3h/Ubo3D1vUVMnAkHOyMlC3pbPJt382Zo3hwaN4atW9XOhq+/br0RCSGE9axcCc899zAZ2d4eBg5Uo44i75FpgjzsyLmrBN84QP2RIby0JCLZ436erjxRqRS9nqhGRQtsFtK0qVqxYDbDW2+pyoUnTqgaBw4OWW5eCJGNKlVSeUceHnDvnlqpVKtWTvdKWIuMDORBoVdvMmnZn+wLuYTRoGF6dA1QIvGP1yxdhMm9WxFQqECW7r16NXTurEYGQkLUO4lGjdS7jAJZa1oIkU3u3lVFxoxG2LgRXnsNvvsODh5US4lF3iPBQB6zbMteZq/6G7OuPzYIeJTRoGHQNEZ3bUrvJjUyfX+zGapVg5Il1SqDrVuha1e1C+LatfBIPRQhhI3RdejdW/3+/vsvlC+vjl29CoUL53TvhLXI0sI85KO125nx42ZiTeYMBQKgNg2JNZl5b+UmPlqX+b2PDQYYNw5+/RX271f5A//8ox5r0AASrV4SQtig+fNh+XK1Y2n58uqYpkkgkNdJMJBHfP/3Pj7/I4tbFD7w+fqd/LB1f6avf+YZNTIwY4b6vkwZFRDUqAFPPgkPli8LIWzMjh2qsujIkfD00zndG5GdJBjIA85eu8UHqyz7lvv9n7dwLiw8U9fa26t9CpYvh9On1TFvb/j9d3j+eejfX5UxNpst1l0hRBaFhUHPnipX4P33c7o3IrtJMJAHTP1+A2YLv7KazWamfp/+LUkf9cIL4OsLM2c+PGZvD59/rv7QTJ+uihRFRVmgs0KILDGZ4NlnIToafvhB/a6K/EWCgVzuxMUw/j11IcM5AmkxmXV2nzzPyUvXM3W9s7Maavz6a7h8+eFxTVOjBj/+qBKUmjWDK1cs0mUhRCZNmaJWDXz3HRQtmtO9ETlBgoFcbuX2gxgN1qnqYzRorNh2INPXDxumdjGcMyf5Y127qpUG589D/fpqyZIQIvv9+iu8847ajrxly5zujcgpEgzkctuOhFh8VCCeyayz/Vhopq/39ISXXlJFh27dSv547dqwa5eqP9CoEfz2W+b7KoTIuNBQ6NMH2reHCRNyujciJ0kwkIvdi4rm4s07Vr3Hxeu3ibgfk+nrR45Ulcse2UgtQbFiaoSgWTPo0EEtaxJCWF90tFox4OkJS5Yk3eVU5D/yz5+Lnb9+2+r30IHz18MzfX3hwiqZ8MMPITIy5XPc3ODnn+HVV+GVV+DllyEuLtO3FEKkw8iRcOCAqg7q7Z3TvRE5TYKBXCw2zpQt94nJ4n3GjlXTBF9+mfo5RiPMng2ffqqmFTp1gjvWHfQQIt9aulT9rs2fr6brhJBgIBdzsDcmfH100Tuc//M7q9zH0T5r+1mVKqUKEX3wgZoyeJwhQ1TuQHCwyiM4ezZLtxZCPOLgQRg8GPr1g0GDcro3wlZIMJCLlfDzsvr2wJqm7pNV48bBuXOwbFna57ZqpYKBiAi10mDnzizfXgiBGm3r3l3tEbJggWwvLh6SYCAXc3F0oLivFwDl+06gWIueFr9HCT9vnB2yXoGkalWVIDhjRvoqD1aqpIKAwECVXLhiRZa7IES+pusqf+fqVZUn4OKS0z0StkSCgVyuSeVSasdBox2a0fjYc82x0Rlq22jQaFypVFa6l8SECXD0KPzyS/rO9/ODv/6Cbt1UmdT//U/9QRNCZNzcuarY19dfy+6hIjkJBmzc5MmT0TSNU6dO0b9/f7y8vPD09GTAgAFERkbydKNqmMx6spyBm0d3cWD+KO5dPMXFzSs5/MVEjn49NUP3Npl1nn6imsWeS1AQNGkC772X/hd1JyeV7DR5strPYMAAtSRKCJF+27bB66+rTYi6dcvp3ghblLXMMJFtevbsSalSpZg+fTp79uzhiy++oGDBgsyYMYPGlUpxLJXrLm7+ETtnNwrVbYU5Lv31AowGjeolAmha1xt/fyheXJUYjv8oUEAtBfT0zNjzmDABnnoKNm2CFi3Sd42mwaRJ6t3MgAFw5oxaiujjk7F7C5EfXb2qRtYaNlR7ggiREgkGcomaNWvyZaK1eTdu3ODLL79kxowZvNmzBZ+PSzkTyOjoQukuL6FlsKKIg50dw1u15JuxKvFv5061/E/T1Jy/2axKCletmrHn0aYN1Kyp/iilNxiI9+yzEBAAXbpAgwawdu3D/daFEMnFxUHv3ur3dfly2YBIpE6mCXKJoUOHJvm+cePG3Lhxgzt37uBfwAMvV6cUr/Op3CDDgQDAW71aUqeqO9988/CYyaT+uGgatGuX8UAA1LXjx8OGDfDvvxm/PihIBSb29iog2LQp420IkV9MnAhbtsD334O/f073RtgyCQZyiRIlSiT53vtBybBbD4r+OzvYU7lEoWTXOXikfyw9fmxhdJcmdKhbEVDvxp9+Wo0KxDOZoEgRuJ3JAojdu0OZMpkfsixVSi09rFsXWreGr77KXDtC5GVr1qjfsf/9T63IEeJxJBjIJYyprBTQE2XiBfr78L++bXFxtMfwYAGxZpe+cUGjQcPZ0Z7/9W3L8y0eliTTNFWpzNdX1S43GqF6dfj2W7Xs78MPM57QZzSqZKaff4ZjqSU7pMHLS22B/OKL6mPcuPQtWRQiPzhzBvr2hc6d1e+aEGmRYCCPaV+3Iqve6Ee5or5A2puPGAwaGtC4cilWvdmf9g9GBBIrUEBtZGI2g52dehE+eVLlDIwaBRUrqn3QM/Ji/PzzathyxowMPLlH2Nur0sWzZ8PMmdCjhypUJERec/NuJNuPhLLqn8P8FHyQP/aeIPTaLcwp7Fh6/776XfD1hUWLpLCQSB9JIMyDCnm781zTWmxYBO3rVORcrBNnrtxIstWx0aBRurAPjSoG8HSjqhR7ULwoNa1aqXXKnp5QtKg69vnn8NprKgfg2Wdh1ix4//30JQY6OqpAYvx4tY968eKZe66apvoQGKj60LQprF6tpjGEyM1u3I1k1Y5DrAw+yKVUdid1drCnTc1y9GpcnUoPpglfflnV89ixQ42gCZEeEgzkcc82rUmdOnWIiY3j0s07xMSZcLAzUqSABw4Z3HPg1VeTH6tUSb34/v232pCoZUto21a946+WRomCwYPh3XdVEDF3boa6kkynTmotdYcOqoTxmjVQo0bW2hQiJ8SZzHy9YTef/vYPJl1PMhX4qKiYWNbsPsKqnYd5olIAFQyt+OILN778Uv7/i4yRaYJ8wsHejoBCBShX1I+AQgUyHAikpUkT+OcfVTb41Cn1h6h/fzh/PvVr3N3Vu5jPP4fr17Pehxo1YNcuKFQInnhCBQRC5CZXb93luQ+W8dG6YOLM5scGAvHiR/x2HDvLwj2L6Db4NC+8YO2eirxG09Pzv02IDIiNhc8+gylT1MYor76qig2lNGR5/TqULKkqo03NWIHEVEVEQJ8+quzx7Nnq/jJvKmzd5Zt3eH7Ocm7cjUgypZdRBk3jvX5P0aaWFOEQ6ScjA8Li7O1h+HA4fVpl+X/0EZQurV6YH1154OurtlGdPx/u3rXM/V1dVQ32sWNVPsGwYWlvnSxEToqOjeOlT37KciAAaoXR+MW/cfDsFQv1TuQHEgwIq3F3V6MDp06pcqivv64qBn77bdKVB6NHq3fzCxda7t4Gg8pb+OIL9dGhQ+brIghhbZ/8toPQa7eyHAgA6AAavPHNb0THxmW5PZE/SDAgrM7fX9UqOHRIlSLu0wfq1FFVCEGtJOjTJ+WRg6x68UVYv17lEgQFQUiIZdsXIqtCr95k0V//WnRHTrNZ5/z1cJZu2mO5RkWeJsGAyDYVKqhCQ9u2qd0IW7VSexXs26emE65cIUn5Y0tp0UIlN0ZHq5UGwcGWv4cQmbV82/6EImGWpOvw7Za9xJmkGpdImwQDIts1agTbt8NPP0FoKNSqpZYYtmmj6hSYTJa/Z/nyKiCoUEEFB999l/Y1QlhbTGwcq/45bJHpgZTcuBvJ9qOhVmlb5C0SDIgcoWmqguGhQ7BgAfzxB2zcqPILFi2yzj19feHPP6FXL1WgaMoULDo0K0RGnbh0ncho62W32hkN7Dl9wWrti7xDggGRo+ztYehQFQS88Ybat2DIEFVe+P59y9/P0VEFG9OmweTJqn67Ne4jRHocOX8Va656jTOZOXT2qhXvIPIKCQaETXBzg0mT1FarJpMqU1y+/MM9ESxJ0+DNN9X+7j/+qKomhoVZ9h5CpMelm3cwGq37Z/j89XCrti/yBgkGhE3p3h3q1VOrDooXVxsaFSigVgRYeki/Z0/YvFmNStSvD0eOWLZ9IdJirVyBxCSBUKSHBAPCppjN0Lgx/PefSjIEtQqgbVu1+mCPhVdK1a+vlh26uqqlh/HLHYXIDk72dg8KA1iPs2P6tjEX+ZsEA8Jm7N4NZcqojYsSK10aVq2Cixehdm147jnL1gsoWVIFHg0bqqDDksWPhDhzBpYtg717ISoq6WNl/H2IezAPFnP3Fld3rufk8jkc/uxNDn/+Nqd/+pi7505k+t4GTaNC0YJZ6b7IJyQYEDbjyhU4ezb5PgKOjtC5Mxw8qF6oN25USwRHjYIbNyxzbw8PtbHRSy+phMbRo62zxFHkPwsWqAC2Vi2VGxMQoHbZ7N8fTu4tlHDenTOHuLZnI45evhRq8BSF6rbCHBNNyC+fcvPIrkzfv1IJCQZE2mSjImFT/voLevRQ+xTEvxjXr69qBMSLiIA5c1RNAoNBbYL0yivg7GyZPsyfDyNHqhLG336r/oALkVlr1qgX/5T4+ek0eHkR58LCibpxBTsXN+ycH/6HM5viOPndB5hjY6g4YGKm7v/jhL6U8ffN1LUi/5CRAWFTWraE/fuhatWHIwSPriZwdYW33lKJf337qq/LlVNLBi3xbv7ll9Uf8I0bVf7CBVmmLdJp8uTJaJrGiRMn6NOnDx4enjz7rB/wNio54DzQGfDAYCjMkCGzebZpTQCcfAonCQQADEY73EtWJPZeOKaYjK2BNWgaNUsXkUBApIsEA8LmlCgBO3aoF3qAa9fU55t3I9l+JJSv/tzN/LXbWbE7mMa99rNm8xXqN4xjwAC1CuG337K+8qBdO5VHcOOGGpn477+stSfyl+bNe7F+vZm7d9/j3r36wDRgLtAKTStKkSIzqFOnDNOmjcE75gZebs4YUik4EBd5F83OAYOdQ4b6YNZ1Braul8VnIvILmSYQNu2NN03ctj9FhNc+9p65BKh3PIYHfznjl0052hupX7ISe9dVZ/sffjRvrqYR6tTJ2v2vXFH5CocOqSmDLl2y1p7Ie0wmFbyuXg1ffjmZmzenYDQOpkOHhXTqBE89ZaJy5QBu3bqIpk2nXr1x/P47QDhFihShZ8+eDBgzkVc++yVZ29HhYZxYNhPPMjUo0frZdPfJoGm0q1OBd/u2tdwTFXmajAwIm3Xk3FWOuCxl281f2R9yOeG4WdeJM5mTrJ+OjjWx/cwh7pZfyovvbeDq9Rjq1oXevVU2d2YVLqxqEbRvD926qcqIEj6LiAi1wmXAAPV/pHFjWLxYrUwB2LRpIKtWwQsvgL+/kQYN6gA6DRu+yIYN4OUFXl5elC9fnjNnztC0Sml6Na6e5B7m2BjO/vYNBjt7/IPap7tvRoNGkQIejOvezELPVuQHEgwIm7R00x6em/Ud58JuASoASEt8AZf/Lh2iSOfFzPjoOn//rVYejBwJ169nri/Ozqoy4oQJ8PrrMHgwxFqvnLywUZcvw+efq8RSHx+1t8auXTBwoNoJ8/Llh4mC5cqVSHJtwYKeODo6sWmTb5KEVE9PT27dUv/Hx3VvRse6FQHQzWbOrl9C9M0rlHyqP/Zununqo9GgUcjLnS9feRoPF6esP2mRb9jldAeEeNSXf+5i3poHFYcy8S7crOvcuBvB6pgfWL+tJ6u/8+W99+Drr1WZ41dfBReXjLVpMKidFcuVg0GD1GjDypXg7Z3x/oncQddVVcpfflFTADt3qv8HTzwB//sfdOwIZcumfK3RaEx2zM7OiEMK0/7xM7VGg4Gpz7WhTBFfxrwynLshRyje5jnciqdyk0Q01K9Kk8qlefuZJ/Fxz+B/cJHvyciAsCmbD55+GAhkgcmsExkdw2tf/cyro2I4fVqt6540Sb2gf/ll5lYe9Oundj7ct08VKTp9OstdFTYkLk5NC40apQpgVamiXviLFVPTANeuwZYt6vHUAoGsMBg0Dv++nBtHdtGoxwAKlKuF0aClupmR0aD+hBf19eS9fu2YM7CjBAIiUyQYEDbjdsR9Ji37M1nRocwymXWu34lg9qq/8fODDz+EY8fU/O7AgVC9Oqxdm/EcgKZNVd0DXVcrDbZutUx/Rc64exdWrFCrVwoWhObN1bRQq1bw669qemnlSrVPho+Pdfsyc+ZMPvjgA9544w22rfiStZNeYGDretQrVxw3p4fDCnYGA+WL+tG1YWU+G9GdtW8P4Kna5dEs9csj8h2ZJhA247P1O7kTdd+iCXpmXWdl8EF6Nq5O+aJ+lC4N332nKgy+/roa6m3SRCUG1svAKqyyZVUGeffu8OST8MUXD5dCCtt34YKqJfHLL7BpE8TEQLVqMHy4Wj1Sq5aaEshOP//8M6+//jply5alYsWKLF26FAAPoIkXTO3RHR9fP0xmHQc7Y8KKGiEsQYIBYRMio2P5acdBzFbYxc1o0Phh237e7vVkwrE6dVS1w99/V0FB/frw9NNqSLhMmfS1G7+b4ksvqXeNJ07AlCnZ/yIi0qbrqpjV6tUqANizB4xGNcozc6YKCkuVytk+7t+/H4CTJ0/SN4XIctOmTTRrVhjZdkhYg9QZEDZh7e6jvLnkd6u172hvZOt7w3C0Tx7/mkywZAm8/baqKzB0qPq6YDpLuuu6qmkwfrzaFnnRIsuVRhaZFxMDf//9MAHw3Dm1B8VTT6l3/23bSgKoEPHkPYywCftDLmFntN5/x+hYEycvpby20GhUyYUnTsC0aSowKFNGfR0RkXbbmgbjxsGPP6qh5+bN4epVy/ZfpE94uJoGeuYZ8PNT8/6//KKW/P3xB4SFqXyA3r0lEBAiMQkGhE04EHo5SREhS9OAI+dTfoXev18tIXN2Vi/qp0+rBMN33lG5AZ9/rrLM09Ktm3onevasmnY4dMiyz0GkLDQU5s1TuRt+fvDss3DypMr437tX/XvMn68Cg5SW9gkhJBgQNuJa+D2rtm80Grh2++Hb/Bs31AtE1apQo4aqJBfPxwdmz1YrD5o3V0WGqlVT7zDTmlSrU0cVovHygqAgHpSdFZak6/DvvzBxoloRUqoUjBkDdnZqxci5c2oviUmT1L+tJNgLkTZJIBQ2IT0VBrPKZDKzbJlaRrZ2bdI6AwUKJD+/VCm1H0H8yoMuXVTBmZkzoUGD1O9TvLhabvjss6qM8bx5KktdZF50tNpFcvVqNRVz8SIUKBTFE09dpfWAm5QuY8Ld1UiJgl44exYCXHO6y0LkKpJAKGxCu8lfcvHmnceec/qnjwEI7JbxV1ajQaOubxCfvZ18/aCmQeXKqqCQv7/6KFJEffbwUI/ruppzHjdOTSt0765WHpQrl/o9TSb1jnXuXHjlFTXakEJhOpGKGzfUOv9fflGrNu7dg1JlYqnb7hi33fdx+Y7KAdE0DcODf6P4oDKgoDfPNKlBx7oVcXN2zMmnIUSuIMGAsAmjv1rLxv2nHjtCkJVgAGDeoC4s/6QUn38OZrP6APViX6CAyj6/ezfpNc7ODwODIkXUpjRXrsCGDSpZrWdPmDxZBQWpDUd/+imMGAFt2qjkNXf3THU/Xzh9+mH2/7ZtKqCqV09l/xetdpqvtv9JeERUQoCWmvh/ClcnB97s2VIK8giRBgkGhE346s/dzF+73arBwMZ3h+Dj7sLp0yoPYOPGhy/gH30Ew4ap1QOXL8OlS0k/P/p1eHjSto1GVbK2aNGkIwvxX4eEqFGCgABYtw5KlHi0d/mT2axyLOIDgCNHwNFRJQN26qTW//sWNPHu8r/4+Z/DaQYBj4qv2d+qRlne7ds2xaWlQgjJGRDZJCIiAlfX1OdxW1Yvw4drtlnl3gZNo2pA4YSa7YGB6p39smXqHXt4uHrBBnB1VcsK0yo8FBWlgoLjx+GTT9RwdliYGjm4fVslH16+DDdvJr3u0CGVi1CpklqpEB8w2NurJMX4IMLXN+8WL4qKUj//+Pn/q1dV0maHDmo5Z6tWJOzsF2cyM+brdWw+qDaByOhbl/jT/9p/ituRq/hoSBcJCIRIgfxWCIubPHkyU6ZM4fDhw0ybNo3ffvuNgIAA9u7dy9KlS5kzZw5HjhzB2dmZ1q1bM3PmTEoWL079ciXYffK82nXw0A7C/ttIbMRtnHz8KfJE50z3x6zr9G5SM8kxTYPnnlOFZ779Vg3hZ4SzM5QurT6eekotX3v7bVi6VE0ZTJ+uEg6jo9W0QvzIwokT8PHHcPSoGk04fVodu38/aft2diqwSGmUIfFnP7/ckYdw7ZoaEfnlF5V7ERWlgqG+fdUUQMOGKT+P+Wu3sfnA6cxsXpmEWdf59+QFpq/YxORnW2WxNSHyHpkmEBYXHwxUqlSJsmXL0qZNG3Rd59atW7z99tv07NmTpk2bEhYWxvz583Fzc2Pv3r2cuRHBgA9/4Obhf7iw8Qdc/APwKluTmDs3uHV0N0ZHF+zdvTI0TWA0aBT39WLl+L7Y21n/VXPfPpVk+McfamnhzJnqc2L376uljN9/r4bCV69Wx7t1U6sWUpueuHRJjT4k/o01GqFQodSDhfivCxZUAUZ2OnZMPbfVqyE4WB1r2FC9+HfqBBUqPP76/SGX6DdneZYDgUctGNqVRpUCLNyqELmbjAwIq6levTrLli0D4OzZswQGBjJt2jTeeOONhHO6detGzZo1WbBgAW+88Qa9GlVh0hcTcfItSumuwzAY1X9RR+9CXNy0Ant3rwz1Qdfhf8+3zZZAANS69vXr1TbH48ZBo0ZqhGD69Icvfk5OaorCYFCf461eraYc6tdP3q7ZrLPn9EX2nL7EvtPXuBB2h5gYMwazE04mP7hbiOjLAfz7rxOXL6uhd3OiGk6apgKC1IKF+M+FCqkpi8wwmdTmTfHz/ydOqBGU1q3VRk4dOmSkxLPOO9//haZpWPL9ikHTmPr9n/w6+cWE7X+FEBIMCCsaOnRowtc//fQTZrOZnj17cv36w7LAhQsXpmzZsmzatIk33niDIH8n4qLu4d/wqYRAAKBAxXpc3r4mw314rXNjKpconLUnkgmtWkHLlqo07ptvQpUqqqrhpEnqhffwYVi1iiQJcWazqnb45psP24mJjeOHbQf4dsteLt28g+FBxmPiREs7w0XiHMzYBxrp2KsC/Z+sS3Efb65dSz0Zct8++O03NYWRuN6Cpql8hcdNTfj7qykMR0eVcPnHH+rFf+1atd1voUIq8e+DD9TPwMUl4z+//SGXOXk55fLRWWHWda6E32P70VCaVC5t8faFyK0kGBBWUyrRNnAnT55E13XKli2b4rn2D96OXrl0EYDAMmUI17SEFz3NaMTBM32bycdnkL/coRHPt6id+SeQRQaDykvo0UPlCcTvezBmjEqgi4xMer7ZDHPmqKkCe3s4fO4Kby75ndCrtx6ek8K75LgHQwCxcSZW7zrC2t1HebnjE/RpVhN/fwO1aqXeR5NJvYCnNjVx5Ijq65UrEBub9Fp7e1WmWdfB01MlRT7/vBrZKFZMBQ2ZffP9Y/BBjAYNk5V2sVy5/aAEA0IkIsGAsBrnRFv3mc1mNE3jt99+w5hCpphbfPr4A693a8aBe/Ys27IPQ6KgIC0Gg4aHsyOTereiRbV07kVsZY6Oqk7+Cy/Ae+/BjBlq1cKTT6rCOvv3PxzSv3FDFSmq1Owoby1dr0YOMnAvk1nHhM7sVX+z8/hZZr/YCSeH1H/N43MOChVSUxwp0XU4eBCWL1fZ/wcPqhGEokXVh6urqs9w6ZJaojl7dtLrvb3TToT09086gvDvqQtWCQRA/Yz2nL6IrutSe0CIByQYENkiMDAQXdcpVaoU5R5Ttq9kyZIAnAsNYdyQIbSqUY5Pf/uHf46GEHvnJkbfIsmusTMYiDObcXawp1vDKgxuWx8vV9vbQ9jLSwUDw4eruvqLF6sljIsWqVUBf/yhcghOhh/n2yW/qyAgC6+HO46d47UvVjNvSGfsM7jkIC5OFf2Jn/8/c0a96Ldtq0Y22rdXywEfpetw61bqdRrOnIHt29XXj66g8PRUQUGhotHcqvT4apRZdTcqmiu37uJfwMOq9xEit5DVBMLi4lcThIWF4evrC8Dp06cpX748vXr1YunSpUnekem6zs2bN/Hx8SE2NpaiRYtStGhRdu7cicODbebemzWXCWNeo1i5KlTtPZJ792MwGDQKerpRNaAwNUoVoWX1srg4ZjL7LQccOADjx6u5+wYN4P33IaBCON2mf0NsnMkiWfQaMPSphgx96jGbKTxw967aWGn1arUM8NYt9c69Uyf10by5Sn60hPnzVYnmggVVgFGzpqoAefkyhF67wRmfbyxzo8f4+tWe1AosavX7CJEbyMiAyBbxKwkmTJhAaGgoXbp0wd3dnZCQEH7++WcGDx7MmDFjsLe3Z9q0aQwZMoQWLVrQq1cvQkJC+PrrryldujTF/X34dfKLOf10LKJaNVWsaONGlSfQpIlO3UHrMbmYLbacTgcW/v4PzasFUr6oX7LHL1xQQ/+//AKbNqkX5GrV1OhF585Qq5Z1ih/Fl2S+dk3VeViyBJo1gz59YEBTM30/tPw9H2VKvNxCiHxOggGRbcaPH0+5cuWYM2cOU6ZMAaB48eK0bt2aTp06JZw3ePBgTCYTM2fOZOzYsVStWpXVq1fz9ttv51TXrapFC1WSd/qnZ/nh2CWw8GuUpsGCX4P5cFBndF3lKKxerQKAPXtU3kDTpqomQseOqkKiJem6qvKYeNpg69aHj8evZti0SX3UaGAPdS3bh5S4OjpY/yZC5BIyTSCEjRjx6SqCj4VaJXFOA+rqA/ljtTvnzqndGJ96Sr37b9tWJflllK6rcsvp2cvh0fwANze1C+GjKlaExd/oDP/uI6Jj4wC4cXA79y6cIvLKWWLvheNdoS7FW/XOeIcTMWgaO2aOeGxypRD5ifwmCGED7kVFs+1oSIZr76eXWdfYfPgEnTrVplMnNRLgkMobY7NZrWpI7YU98dcxMUmv9fZ+uEKgTBlo3Dj5qgF/f7Ws0u/BrIXRqIKDefNUeWJN06i4tSD7Qi4BcO2/jZhjo3EpWILYSMskFpYs6C2BgBCJyG+DEDbg6IVrVgsEAOyM0LXvFUa3Uy/mGzak/o7+8mW1miAxX9+HL+oVKqhkwkeXChYunP4EQ2dnVR45Lg5691b1FR7kmgJql8H9oZfQdbVLpb27N5qmcejT8Vn+WRg0jVY1Uq53IUR+JcGAEDbg2IWwDNVTyCiTWWfN5qvMfOHhMU1T787jX9SrVFGlgx+tBVC4cOqjCOkRv7rk+PHjTJ06lTVr1uDg4EDbtkMZOXIq5cpd4MUXR7Bp0yZcXFwYO3Ysg14aztw124iNM+HgUSDrP4BH9AiqavE2hcjNJBgQwgbcibyPwaBhNllveMC9wH1++SXp5kWZ3YcgM3r16kXFihV57733WLduHWvXTqNFiwIMH76QFi1aMGPGDL799lvGjBlD3bp1ea5pDRZv3GPxvQk61a9EIW93i7UpRF4gwYAQNiA7CuE5OWokWrSR7erVq8fChQsBtWIkICCA0aNHM336dMaNGwdA7969KVKkCF999RWffvYFG/ad4tLNOxYZMTFoGt5uzozu0iTLbQmR18i2XULYgAJuLphM1l33XsA9Z6syDhw4MOFro9FInTp10HWdF198WDfCy8uL8uXLc+bMGZwc7Jg5oD32doaEDZoyS0MlJs7o3w4PFwtVThIiD5FgQAgbULF4QYsVGkqJ0WCgaoC/Fe+QthIlSiT53tPTEycnp4QqlYmP37qlNmeqVKIQC4Z2w8HOiNGQuYDAaNCwMxqYO6gjdcsWz1znhcjjJBgQwgaUK+qHndF6v45m3UzVHNjKObGUNqhK6RiQJE+gTtliLBvzLGWL+KZ47uNoGhT39eKb156RXQqFeAwJBoSwAc4O9rSpWT7T737TYmcw0LpW6htE2bpAfx++Hf0s9kYjjvYqgLBLpU5y/HEvVyeGtQtixbg+VCpRKNv6KkRuJAmEQmTC3bt3efvtt1m1ahWXL1/G09OT6tWrM2PGDGrVqkVAQADNmjVj0aJFSa5r1qwZAJs3b0743Lx5c5YvX074nl0c/OJzzDHRuJcoT7GWvdDs7LmyfQ23TuxFj4vBs0x1ijZ/GoMx/b+6RoNG29rlbXInx4ywMxqwMxpoVbMcAwZ2Ysexsxw8e5mQq7eINZmwNxoo4edN1YDC1CtbnBbVymBvl7HdGoXIryQYECIThg4dysqVKxkxYgSVKlXixo0bbNu2jaNHj1KrVq0Mtzd9+nScnZ1p3OkZDh09Sti+bWAwomkapuhICtVrQ+SVs9w6uhsHjwIUqtcm3W3b2xkZ3i4ow32yFWvWrGH//v0AxMbGcujgQbav/g6ACZ06Ua1atZzsnhB5ggQDQmTCunXrGDRoELNmzUo49vrrr2e6vbi4OLZs2cLd+7F0fncRsZERhJ/Yi3vJ8pTqNFidVK0RMbevc/PIrgwFA2O7NsW/gEem+5bTfvzxRxYvXpzw/d69e9m7dy8AxYoVk2BACAuQnAEhMsHLy4udO3dy6dIli7T3/PPPY29vTwF3F+YN7oybf0lAx7tS/STnuRQuQey9cHSzKV3t9giqSvccrrY3efJkdF1Ptmpg0aJF3Etht6LNmzdz6NChJOfpup7iR//+/a3dfSHyBQkGhMiE999/n0OHDlG8eHHq1avH5MmTOXPmTKbbS7zsrmbporzY7gkAnDySbidocHACXccU/cg2gInEL8nv3aQGb/ZsiZYdFY2EELmaBANCZELPnj05c+YM8+fPp0iRIsycOZPKlSvz22+/AaT6AmwypfyO/tEldgEFVT3+agFF1OPJVhmkXJVA0zQ8XZz5cFAnxvdojsFKqxOEEHmLBANCZJK/vz/Dhg1j1apVhISE4OPjw7vvvguAt7c34eHhya45e/Zshu7xevdmfDSkCw3KlyDxy7rRoGHQtCTL6wp5uTGy0xOsebs/zaoGZuYpCSHyKUkgFCKDTCYT9+7dw9PTM+FYwYIFKVKkCNHR0QAEBgaydetWYmJicHiw5d/atWs5f/48pUunv/iNpmk0rlyKxpVLcTX8HmPHn2HJrj9oVaMcDq7uuDk5UK6oH5WKF6RCsYIYU1l7L4QQjyPBgBAZdPfuXYoVK0aPHj2oXr06bm5ubNiwgd27dyesLhg4cCArV66kbdu29OzZk9OnT7N06VICAzP/jr2QlxulC/sAMOHpFskS8oQQIrPkbYQQGeTi4sKwYcPYt28fkyZN4rXXXuP48eMsWLCAUaNGAdCmTRtmzZrFiRMnGDlyJDt27GDt2rUUK1Ysh3svhBDJabolNwsXQgghRK4jIwNCCCFEPifBgBBCCJHPSTAghBBC5HMSDAghhBD5nAQDQgghRD4nwYAQQgiRz0kwIIQQQuRzEgwIIYQQ+ZwEA0IIIUQ+J8GAEEIIkc9JMCCEEELkcxIMCCGEEPmcBANCCCFEPifBgBBCCJHPSTAghBBC5HMSDAghhBD5nAQDQgghRD4nwYAQQgiRz0kwIIQQQuRzEgwIIYQQ+ZwEA0IIIUQ+J8GAEEIIkc9JMCCEEELkcxIMCCGEEPmcBANCCCFEPifBgBBCCJHP/R80EXEsWhyigwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDCElEQVR4nO3dd1yV1R/A8c9zL3sjoOJEce89MHeO3CvN0tRypVbmSG24sp+ZOdKybGqaZVqZo7LMkYqp5d4L3AMHDkDGvc/vjyMIArLuhQt8368XL+C5z3Oec1G433vO93yPpuu6jhBCCCHyLUNOd0AIIYQQOUuCASGEECKfk2BACCGEyOckGBBCCCHyOQkGhBBCiHxOggEhhBAin5NgQAghhMjnJBgQQggh8jkJBoQQQoh8ToIBIYQQIp+TYEAIIYTI5yQYEEIIIfI5CQaEEEKIfE6CASGEECKfk2BACCGEyOckGBBCCCHyOQkGhBBCiHxOggEhhBAin5NgQAghhMjnJBgQQggh8jkJBoQQQoh8ToIBIYQQIp+TYEAIIYTI5yQYEEIIIfI5CQaEEEKIfE6CASGEECKfk2BACCGEyOfscroDQoj003UdTBfBfBUwg+YKdmXQNIec7poQIheTYEAIG6frcRC9CT3yB4jdA/rdR84wotsFojm1B+en0Yy+OdJPIUTupem6rud0J4QQKdPvb0C/MxnM1wAjYHrM2QZAA+dn0dxHoRlcs6OLQog8QIIBIWyQrkeh334L7q8BNCAjv6YGMBRC85qH5lDdSj0UQuQlEgwIYWN0cwT6rRcgdj9gzmQrBsAOzfsLNMcGFuydECIvkmBACBui6zr6rUEQs43MBwLxDIADmu9PaHZlLNA7IUReJUsLhbAlUcsh5m+yHgjwoI1Y9PCxKglRCCFSISMDQtgI3XwT/VpzIMribWvub6G5Pm/xdnOKKc5E6OHznPzvDOePXSTmfiz2jnYULetP2dqlKV2tJHb2slhKiPSS3xYhbEXkCiDaKk3rEV+CSx80LXcPBt64fIt1C/9k9SfruR12BwA7e2PC43GxarWFm7crHQa3osPQ1hQq6ZcjfRUiN5GRASFsgK7r6GFNHhQTsg6VTNjEau1bk9lsZt3CP/l09DfExcRhNqc9jWIwGjAYNAZM6033UR0wGo1pXiNEfiXBgBA2QI87i369lRXvYAcu/TB4jLPiPawjKuI+U7p/wH9/7M90G5WCyjNtzXjcvd0s2DMh8o7cPWYoRF4Re9DKN4iD2ANWvofl3Y+MZkLbaez9K2s/n2M7TzKm+WQibkdYqGdC5C0SDAhhC0xnURUGrXmPM9Zt3wo+evlLju44gdmUtdUVZpOZ0MPneb//x8hgqBDJSTAghA3Q9RhUpUFr3iTGuu1b2K7f9rL+602YzZZ58TabzAT/sptN32+3SHtC5CUSDORBixYtQtM0QkNDs/W+/fv3JyAgIFvvmVhKz7tZs2Y0a9Ys2/uyefNmNE1j8+bN6Tpf0xzJWMnhTMhFOxuazWY+evlLNINlAyRN01jw6lfExsRatF0hcjsJBoTIggULFrBo0aKsN2RXisdvQmQBdmWTHTKZ4MQJOHnSurfOqL1/HeTymavoFhoViKfrOrev3yV41W6LtitEbid1BoTIggULFuDr60v//v2THG/SpAlRUVE4OKTz3bhdFct3LukNiNWrsmgh3LgBhw/Dvn0qCIiNhQIF1HFb8ftXGzHYGTDHWaISY1IGo4Ffv9hA055BFm9biNxKggEhrMBgMODk5JT+C4zFwFgUTBet1KM4Pv68EaMnqO80DeLz6DQN6ta10m0z6eDWo1YJBEDlDhz55yS6rqNpVs7TECKXkGmCfGLBggVUrlwZR0dHihQpwvDhwwkPD09yztatW3n66acpUaIEjo6OFC9enNdee42oqOTlcVetWkWVKlVwcnKiSpUq/Pzzz5nu286dO2nXrh3e3t64urpSrVo1PvzwwyTnbNy4kcaNG+Pq6oqXlxedO3fm6NGjmbpfdHQ0kyZNokyZMgnP8/XXXyc6Onn1v6VLl1KvXj1cXFzw9vamSZMm/PHHHwAEBARw+PBhtmzZgqZpaJqWkJ+QWs7AihUrqF27Ns7Ozvj6+tKnTx8uXryornfpC2gMePUKHoGnuHg5jq79L+EReIpClc8wdkoYJlNmhs01MJZgyIiG1K+vjiROqNd1KFoUbt/ORNNWcOfGXW5cumXVe9y/d59Lp69Y9R5C5CYSDOQDkydPZvjw4RQpUoRZs2bRvXt3Fi5cSOvWrYmNfZhItWLFCiIjI3nppZeYP38+bdq0Yf78+Tz/fNKa9n/88Qfdu3dH0zSmT59Oly5dGDBgAP/++2+G+/bnn3/SpEkTjhw5wquvvsqsWbNo3rw5a9euTThnw4YNtGnThmvXrjF58mRGjRpFcHAwjRo1ynCSpNlsplOnTnzwwQd07NiR+fPn06VLF+bMmUOvXr2SnDtlyhT69u2Lvb09U6dOZcqUKRQvXpyNGzcCMHfuXIoVK0aFChVYsmQJS5Ys4c0330z13osWLaJnz54YjUamT5/OoEGD+Omnn3jiiSdUYObcDTRXQMNkhqd6X8SngJH3J/rSpKEzsz8N57OlmXnF1tFcB+LqprF1K/TsqUYDEvvqK/D1hVat4KOP4Ny5TNzGQm5eCc+W+9zKpvsIkRvINEEeFxYWxvTp02ndujW//fYbBoOK/ypUqMCIESNYunQpAwYMAGDGjBk4OzsnXDt48GDKlCnDG2+8wblz5yhRogQA48aNo1ChQmzbtg1PT08AmjZtSuvWrSlZsmS6+2YymRgyZAj+/v7s27cPLy+vhMcSrwUfO3YsBQoUYP2GTVyOiOXExTAGFQjgvVcH0P+lV/jks88p4++brnsuW7aMDRs2sGXLFp544omE41WqVGHo0KEEBwcTFBTEqVOnmDp1Kl27dmXlypUJP7fEfevSpQtvvfVWwjv8x4mNjWXcuHFUqVKFv//+O2EK4YknnqBDhw7MmTOHKVOmgMckoC/37+v07OTGW6N8ABjaz4s6rc7x9bI7vNTPK/UbJWME++rg3BMAe3tYtgzc3FQAAFCjBvzyC6xZoz6PGgUvv6yOd+oEnTtDzZrJAwhr0dNRatgSTFmsXSBEXiIjA3nchg0biImJYeTIkUle0AYNGoSHhwfr1q1LOJY4EIiIiOD69esEBQWh6zp79+4F4PLly+zbt49+/folBAIArVq1olKlShnq2969ewkJCWHkyJFJAgEgYS73/IWL7Nu3j4JVG9B55nKGLviJuau3sf70LdyLl2Pb5o08M3MZT4xfwNpdR9K854oVK6hYsSIVKlTg+vXrCR8tWrQAYNOmTYCaBjGbzUycODHJzy1x3zLi33//5dq1awwbNixJLkH79u2pUKHCw38Hp04qdwAY8rxnkjaeqO/MmXMZWRJnAM0ZzfP9JBsUGY3w+efqBR+ge3coUQKGD4c//oCwMPj+e6hUCebNg9q1Hz6+fj2kMJtiMaGhoZSuFsAlPdR6N3nAzcvV6vcQIreQYCCPO3v2LADly5dPctzBwYHSpUsnPA5w7tw5+vfvT4ECBXBzc8PPz4+mTZsCcPvBhHL8+WXLJl+m9ug90nL69GlAvStPybEL1+j77kJ1f1wSjpt1nTiTGQfvgpjuR2COjeZ+TBy7T10A4KO124mMTrnAzsmTJzl8+DB+fn5JPsqVKwfAtWvXEvpmMBgyHOCkJrV/B1CjNPGPa5qG5lAHJycjfr5JVyJ4exm4FZ7ed7NG0JzQvL9GsyuR7FGDAT78ENatg9deS/qYpyf06gXffgvXrsFff6mA4ddfoW1b8PNTUw3ffgs3b6azOxnk4GRvnYYfMNoZKF6hqFXvIURuItMEAlBD9q1ateLmzZuMGzeOChUq4OrqysWLF+nfv3+6domzpGVb9jLzpy1E3lTb1OrpKMhjfjB8/+t/xzl47RsWvNQ1+TlmM1WrVmX27NkptlG8ePEs9NpSjBiNTuD8DEQtQ8XsGfn5q4RBzetDNPsKqZ+lQbt2j2/J3h5atFAfc+bAoUNqKmH1aujTR40yNG6sphI6dYLSpTPQzRSULFmSqKgo3mw3nYNbjlqtdHDJSsVxcLRuwCFEbiLBQB4XP4d//PhxSif6Sx0TE0NISAhPPvkkAAcPHuTEiRMsXrw4ScLgn3/+mWJ7J1OoUnP8+PEM9S0wMBCAQ4cOJfQDYNFf/zLnl60AGN28AYi+dS3Z9dE3r2F0csVg75jkuK7rhN25R7+5y4mNicXZ4eEf/cDAQPbv30/Lli0fO9wfGBiI2WzmyJEj1KhRI9Xz0jtlkPjfIX5KIt7x48dTzLUweE5Gd2qDfmcSmEJ5fLni+MccwPUFNLfhaBauOKhpULWq+njrLbh4EdauVcHBuHFqhKFKlYd5BnXqqBGIjN1Dw8nJiZa9G3Ngc9rTPpl6HgaNFs82tkrbQuRWMk2Qxz355JM4ODgwb968JO+yvvzyS27fvk379u0BEvZ6T3yOruvJlvj5+/tTo0YNFi9enDB1ACpoOHIkY3+8a9WqRalSpZg7d27CMscth84w55etCf2wd/XAybcot479iyn64RLH+zcuc/f8cTwCKqbYtsmsExkdw8lL1zElqmLXs2dPLl68yOeff57smqioKCIi1K52Xbp0wWAwMHXq1GSjIol/Rq6ursmWaKakTp06FCxYkE8//TTJEsbffvuNo0ePJvw7PEpzbIjmux7N+5sUKwiqk5zBvjaa+1toBXdgcH/N4oFASooWhSFD1PTB9euwciXUqgWzZ0+mfn2NwoVPULZsH1xdPfHz8+Ptt99G13XOnz9P586d8fDwoHDhwsyaNSuhzdDQUDRN44I5BCdXFeQd1nezSf+Z+3oU+/VgNuk/s0VfzQl9f6ZGDoxGA21faG6xn4MQeYGMDORxfn5+TJgwgSlTptC2bVs6derE8ePHWbBgAXXr1k3Igq9QoQKBgYGMGTOGixcv4uHhwY8//sitW8nXe0+fPp327dvzxBNP8MILL3Dz5k3mz59P5cqVuXfvXrr7ZjAY+OSTT+jYsSM1atTg2T59WfnfGW5ducj9m1co3XkIAP6NOhKy5jNOrfiQApXqY46L5fqBbRgdnChUr02q7ZvMOjFxJi5cD0841rdvX3744QeGDh3Kpk2baNSoESaTiWPHjvHDDz+wfv166tSpQ5kyZXjzzTd55513aNy4Md26dcPR0ZHdu3dTpEgRpk+fDkDt2rX55JNPmDZtGmXKlKFgwYLJ3vkD2NvbM2PGDAYMGEDTpk3p3bs3V69e5cMPPyQgIIDXHp24T0TTNHBsgObUBvgHreAuMF0D4kBzB2PRJAmCOcHdXeUVdO8OJUvCO+8A9OLKlYpERr7H/fvrmDZtGqdPF2D37oW0atWCGTNm8O233zJmzBjq1q1LkyZNEtpzcLSn94RufP32d6CraaK9bMWTApSlGje5xjlO4oIbxQhMdz81g0bXV9rh6eth+R+CELmYjAzkA5MnT+ajjz7i3LlzvPbaa/zwww8MHjyYP/74A3t7NYRub2/PmjVrqFGjBtOnT2fKlCmULVuWb775Jll7bdu2ZcWKFZhMJiZMmMBPP/3E119/TZ06dTLctzZt2rBp0ybKlSvH7NmzOf3XSu6dP4FHwMPEPfcS5SjVaTBGJ1eu7PydsL2bcSlcksAer+Dg6ZPmPcLuRHDiYhigApBVq1bx3nvvcfDgQcaMGcOUKVPYvXs3r776akIiIcDUqVP56quv1Bz2m28yceJEzp49S8uWLRPOmThxIu3ateP999+nd+/eTJ06NdV+9O/fn+XLlxMTE8O4ceNYuHAhXbt2Zdu2bclWUzyOZvBCsy+HZl8Jza54jgcCj4qfGujatR537izjyJGXeOedX3BwKMZ3343m9OkBHDy4gIiIl5g7dy3Ozs58Fb/OMZFer3cmsFpJNE3DjJlCFKOSVodiWiDVtIa448VFQtPfL6MB/1IF6Te1V9onC5HPaLps7i1sQFRMLC3eXEhktOV3kzMaNLo1rMpbvVqmfbLIssmTJzNlyhR27dpF3UR1jrt27cqqVauYMyeMjRt9+fNPuH8fHB1r4ufnzvLlf1OoUChlypTi66+/pn///lw4cYlGVZtwLuY0TeiIg/YwP+S4vo/LnKWZ1jnNPhmMBhyc7JlTN5IyERdh0CBo1gwCA7OvgIIQNsy23lKIfGvj/lNWCQRATRes3nWY6Ng4q7QvUhZfpCqep6cnTk5OjBzpy+rVamOkVavA29uTy5dv0agR1Kunzt2zByIjoVi5ItRtWwMDRpzsnJO0Z4c9caT9f8ZgZ8DRxYEZf06kzN3zsGuXCgbKloVChaB3b1i40HbqMQuRAyQYEFZx8+ZNrly5kupHWFhYkvP3hVzCLqOp5xkQHWvi5KXrVmtfJBeflJraMRcXteqgfHmoUEFn+3Z4+mn12Pz54OOjViZcvu6Go7MTtVtXB9S8f3rEv+Gv3LA8C/d+QKUG5WDBgqQnhYXBDz/A0KGqwpIQ+ZQkEAqr6NatG1u2bEn18ZIlSybZV+Bg6BXirFjLQAOOnL9KlZKFkz948KBaUF8h9TX5wvqCgqBIEfUmffp0sLNT9QyCg9Xjm29OoF6vYML3r+LiMbXq4NHyE5pBw2DQMMWZKV6hKE+P7kTr/s0eVpGsW1eVVNyzJ+m2jYGBMGJE9j1ZIWyMBAPCKmbNmpXiSoR4iUsfA1wNv2vV/hiNBq7djnh44NYt+O47+Owz2L9fjU/v3GnVPoj0K1wY+veHMWPgmWfUdEJhf43PVzciMrIRlYqdxlV7A84foUiZwsTej8Xe0Z6SlYpRrk4gNVpUoXJQ+ZTrQIwaBc899/B7sxnefRe8vbPr6QlhcyQYEFZRu3btDJ1vzoY8VpPJpIaEV6xQlXLiEuUQFChg9fuLzHFyUqMEP/2kEg7/+gt++SWQZctUjYl1N+fTvr2aUmjTRm3C9Fg9esCrr6riCEajqpT0/PMQG6vKKgqRD0nOgLAJro7WLZJj1nXcDuxXRfdXrlR/+HVdfWiaKqc3e7baoWfLFjh5EjJQM0FkDycnaN9eDeiMHq2ODR2qRv179FB5Bu3aqamGS5dSacTB4eGUwFdfqYTC556Dvn1h4sSH0wdC5COytFDYhNFfrmXjgVPExUZzcctPRF45R+y9cNDNOHj4UKBSfXyqNkJLISktvT4a2JHGH72vXgB0XQ0PgwoGvLzUdnyRkUkvcnNTE9n+/g8/p/S1u7ssUcthZ86oHIPVq+Hvv8FkUikCnTqpj6pVE/0TxcbCgQMqfwDU/4cZM2DCBBUwfv01PDKVJUReJsGAsAlf/bmb+Wu3ExN1j9DVn+NaNBB79wJomkbE5VDCj/+HV7kalGjTN9P32DhtMD4ernDqlFpatnmzekDT4OOP1VvMu3fh8mX1tvLy5aRfJz5295EcBxeXxwcL8Z89PSVoyAY3b8Jvv6nZoN9/V/9cAQEP901o3FjljCbz449qhKB6dZWoUKhQNvdciJwhwYCwCaHXbtF52qJUH7+45SduHNhGxRcmY++asVKyBk2jSsnCLBn1zMODug5LlsArr6j15T//DF26pL/Re/ceHyzEf/3o2nUnp8cHC/HHChSQoMFCoqPVzE/8bosXLqiBoHbtVHDQtq2K0RLs3q0ecHRUezxXrpxTXRci20gwICwuvgLd8ePHmTp1KmvWrMHBwYGhQ4cydepULly4wIgRI9i0aRMuLi6MHTuW0aNHM+ijlfx76gJmc/L/kmF7NnN5+2rKPTcOpwIZf7f2Xr+neKp2CksHr1+HpUvVjjvWGBaOjEweIKQUQDy68sLBIe1RBn9/NUluxfoMeY2uw969Kij45RfYt0+NEDRr9nA6oUQJ4Nw56NgRQkNV0mmb1PfAECIvkGBAWFx8MFCjRg0qVqxI48aNWbduHevWrWP27NksXLiQFi1aULVqVb799lu2b9/Oli1bcCtamgEfrgDAbIrDHHMfc1wsUdfOc3Hzj2hGOyo8/waaIf15A0aDRjFfL34c3xd7u8znG1jd/fsPA4XHBQ43biS9zs7uYaCQ2ihDkSLg5ydBQwrOnYM1a1RgsHmzSiWoUUNNJXRqGUHN93qhrf9dVUF66aUc6aNuugyx+9BjDz/YoMoMBnc0u/JgXxXsKtrc/hQi95FgQFhcfDAwePBgFi5cCKhlfQEBAVy8eJHp06czbtw4AMLDwylSpAg9e/Zk0aJFTPxmE7/s3k/4yT2cW78koU3ngsUp1rIXzr5FMtQXTYMlo3pTNaViQ7lRTAxcuZJ2TsO1a0mvMxrV4v20RhsKFlTn5kO3b6v8gtWr1ezA7dtQrJhOpwLb6HzgHZqNqIrD3Pez5eej6zpEb0SPXAIxD6ouYYeqsqSjFoI9WBprLIrm0gece6IZ3K3eN5E3STAgLC6tjWrCwsLw9fVNOF6zZk3c3d359NO/ad8pFueGyzE4hRAZdglTTBT3zp/k/vVL+DfuhGvhgAz15bXOjenfMuO7KeZ6sbFw9WraOQ1XryZdSmcwqIAgrWTIQoVSycDLG2JjYevWh3kGoaHgzh2e8t9Hp6l1adfd2Wo1inTTJfTbbzwIAoyAKY0rHuSWGHzQPKejOTa1TsdEniZFh4TVpLZRTeJAIP742bM3aNgQSpa059s3uzNt9Y+ccHHHrOt4lanOtd0bCFm1kPJ9J6SZQKih3jsNa9cwfwYCoF6oixVTH48TF6dGEVILFvbtg19/VUGDKdGLkqapqYfHTU34+6vRCAfr1pCwBnt7aNFCfcydC4cOwS8fXGH1Ulf6DHLGOFSnSRMtYXVCqVKWua8eHYwe/hLoMQ+OpBUIQEJNZvNN9FuD0F0HobmNSbn6ohCpkGBAWE1aG9XEu3QJQkN1nnpK1fzx8HDm61K9+HD1Vr7fuh+DpuFZphpX/vmVOyGH8KkSlPo9DRquTg5MeqYVT9Yoa9HnkyfZ2akX7iJFHq65T4nJpDb1SS2n4dAh+OMPNYUR98jukL6+addp8PdX2fs2SNNUjYKqi8vx1thDXGxbn7V3m/JL9BuMG+fFa6+pIoadO6sExDp1MpeeoUfvQL81EBUAZGbA9kHdjIjP0fVYcJ8gAYFINwkGRI4xmVTt+ZMn1Uq61avVaxOAi6M9E55uQasa5fjk9x1sDb4AgDnmfrJ27AwG4sxmnBzs6NKgCkPbNsDbTQrGWFR8zkHhwlCzZurnmc0qyTG1qYljx2DTJvV9TEzSawsUSDsR0t8/Z4sBValC0f9WM6RLF4bsLcK9r75jvVNnVq+GTz5RWxz4+6uFCJ07q5EFJ6e0m9VN19DDh6Ne0C0wcxu5COwrg3PnrLcl8gUJBkSOuHdPbSP/669Qpox6U2hnB9evX8fHxyfhHU2dssX4suzT9Nv3ByeBhvXrc8/NnYj7MRg0DT9PV6oF+FO9VBFa1SiLq1PuG5LOUwwGNX3g56cK96RG11VloJSmJi5fVoWhtm5Vx6Kjk17r6Zm+qpCurtZ5joUKwcaNMGAAbn260H36dLovGkecSSM4+OGyxc8+U11o3VoFBu3bq0GS5D8KHf32W6BHkfDuPss09DtTwKEhmrGghdoUeZkEAyLbXbig3jmdPg1r16oqsNevq8eWLl3Kp59+SpcuXShdujR3795l/fr1/Pnnn3Ts2JEfZ72Vs50XlqFpqkaCj48ag0+NrkN4eOo5DaGhsGOH+j4qKum17u7pqwrpnokMfGdnWLYMypVTJYxPnMDu009p0sSBJk1g5kw1CBKfgDhggHrKjRo9rIJYNn4WK2YnxGzOeB8eSwc9Cv3eAjTPyRZuW+RFEgyIbGU2q92C7e1h+3b1OjBjxsPHn3jiCYKDg/nuu++4evUqdnZ2lC9fntmzZ/Pyyy/nXMdFztA0tbWwtzdUqpT6eboOd+48vkbDv/+qzxERSa91dU17asLfP3kpaYMBpk5Vr+oDB0JIiCpnXKAAmgYVK6qP8eNV/uXatSowmDgRxo6FChVUYDBm8FJ8XNOzaiCjTBD1E7r7GDRDWls5ivxOlhaKbPPzz2pzuKpV1Tumwnlk6b/IZeL3n0hr2eWdO0mvc3ZOPVi4cQOmTFEjHb/9pkYMUhEZCRs2PCh0tOkux7bWxWi01PRAcprHe2gu3azWvsgbJBgQVqfrath0/Hi1zezixbIhnMgFIiIeXxEy/uvw8OTXFi6s1hs+brTBxwfT/Z1ot5+34pOwA+eeGGSqQKRBggFhVTExMGwYfPklvPmmGlWVqrgiT4mKehgcnDwJ//ufSohp2FDtZhkfNNy8mfQ6e3v0McXQR9ipgoLWYlcJg+8qK95A5AUSDAiruXULuneHbdvgiy/geWu+ARLCVsTGqgj4iy/gjTfgnXdUBBwdnayUtDngd6h5EgzWmybAUAhDwa3Wa1/kCZJAKKzi1Cno0EHVqdmwAZo0yekeCZFN7O3VusLy5eH11+HECTU35uICJUuqj3h37kHkaSy3pDAl1mxb5BUyYCssbutWqF9f5Qrs3CmBgMiHNE1V1PrpJ1VMo1kzNSrw6GkGD9IqMrQ5OBKj/0k2B0dmri8Gr8xdJ/IVCQaERX3zDbRsCdWqqeXfZcrkdI+EyEFduqjo+OJFFSEfOJD0cftKWH5JYWJGsK9mxfZFXiHBgLAIsxneegv69YO+fWH9elVdVoh8r1Yt2LVLLTts1EiNFMSzq5Lm5U0aOBMREkiTBplZgmNGs0/7HkJIMCCyLCpKlRZ+911VQOiLL3LlRnVCWE/RovD332qzgo4dYf58ADSjDzg04HF/ig0GDScnAwZDZjYdMoBjm8z1WeQrEgyILLl6FZo3hzVrVPG1119PWqRNiPzq4sWLvPDCCxQqVAhHR0cq16/PVx07wmuvcfWVV7AzGJgyaRKaSx8SJ/kdPxWD0f8kH38VDmQlZ8AITm3RjClsiCDEIyQYEJl26JCaBj13Tr3p6SZFzoQA4OrVqzRo0IANGzYwYsQIPvzwQ8qUKcOLgwYxt1gxCi1cSFNd54fZsyG6LthVBtT23j+svovRCD06ZrWEsIbmNjzLz0XkD7K0UGTK779Dz55QurQaFShePKd7JITtePPNNzGZTBw8eBAfHx8Ahg4dSu/evZk8eTJDLl+m15EjDPnwQw7XqUflv75EdxgKwA+/3KNpQ2cK+WXtz7PmNhLNTjJ4RfrIyIB4LJNJbQyX2Mcfq+1YmzZVBYUkEBDiIV3X+fHHH+nYsSO6rnP9+vWEjzZt2nD79m327NlDt7fews7OjuXXr6PVfRrt+gscOhbNkRMxPN0pEzspJtDAsQW4vmCx5yTyPgkGxGO9+65aHrh+PcTFwSuvwIgR8OqrsGoVuMlmaEIkERYWRnh4OJ999hl+fn5JPgYMGADAtWvX8PX1pWXLlvzg4wNly6LVfZsfviqKnR10a+eR+Q44tkTzmoemycCvSD/53yJSFRMD8+ap0YFu3aB2bQgOhk8+gaFDc7p3Qtgms1klA/bp04d+/fqleE61amrt/zPPPMOAAQPY9+231Jg3jxVLltGycgl8C5YE03nSKkj0kBEwci3ydSpX7sPw4QbGj1dFD4VIDwkG8rhzYeH8c/wsR89f48yVm0THxeFoZ0fpwgWoWLwgDcqXpISfV4rXrlihdmYFte3qtm3w/fcqV0AIkTI/Pz/c3d0xmUw8+eSTjz23S5cuDBkyhOWrVsGYMZxYtowJh8+hjW8Ms3ugR38HnH5w9qMDuXZAHOAAzl3RXAcRfqoEN2+q7RA++gjGjYOXXgKPLAw0iPxBNirKo7YfCWXRxn/ZdeI8AEaDAZP54fIlO4OBuAff1ytXnP4t69CoYkCSNurUgb17VUEhAKNR1U/ZskW2IBbicQYMGMCyZcv477//qFIladGfsLAw/Pz8Er7v1KkThw8f5umnn2bOnDlc/fhjvEaMgHr10H9cwea9K2nRZgR/re5Es4ZGwAQGT7CrpAoKOTZFM6gcA10Hd3e1+zKoZb7u7vDaazByJHh5Zc/zF7mPBAN5THhEFP9bsZH1e05g0DTM6fjnjT/vqdrlGd+jOV6uzuzeDfXqJT1P09Qfm1mzYNQoKz0BIfKAq1evUr9+fcLCwhg0aBCVKlXi5s2b7Nmzhw0bNnAz0XbG3377LX369MHd3Z1mzZqxevVqNR/XpQt4eLB54kSa9+vHpk2baNasWZr3bt4cNm9OfnzgQPj8c4s9RZHHyDRBHhJ67RYD563gxj1VnCQ9gUDi89bvOcG/py7wxctPM2KEd5JznJ1VJdUWLVS5YSFE6goVKsSuXbuYOnUqP/30EwsWLMDHx4fKlSszY8aMJOd26tQJZ2dn7t69S69evdTBoCC1y1eHDmo75AyoWxe2b1c7KYMK4qtUUbspC5EaGRnIIy7cuE2fWd9xJ/I+JnPm/0mNBg1PFyfu7+jNzUueDByoNlyrWRPsJHQUInvdvg1PPw2bNsGnn8KLL6Z5yfffq/Lg8dzc4ORJKFzYiv0UuZ4sLcwDTGYzY79am+VAQLWlczvyPqXbr+PIUTNjx6p3GhIICJEDPD1h3To1xj9woMoITJT7k5JatdRnBwd4/32wt4chQ9K8TORzEgzkAUs27eHI+WtZDgTimcw6h85dZemmPRZpTwiRBfb2sGABzJkDM2dCjx4PMwRTULas2jBs1y4YOxaWLIHVq9WlQqRGpglyucjoWFq8uZComFiLt+3iaM9f04bg4mhv8baFEJmwZo2aA6hQQb3CFymSrsvefBPeew/++ktN+wnxKBkZyOV++++YVQIBUIHG7/8ds0rbQohM6NhRFfy4elUt99m3L12XTZ2qgoBnnoHLl63aQ5FLSTCQy63dfRRr7Risaap9IYQNqVFDrTQoXBieeEKNFqTBaITvvlOfe/V6uNJAiHgSDORiZrPOkXNX012wNKN0HQ6fv4rZQrkIQggLKVJEVf9q3Ro6d1b5BGnM+BYsCD/8ADt2yDJDkZwEA7nY+evh3I+Ns+o97sfEcfHGbaveQwiRCa6usHKlyhIcNUrVHU7jLX+jRiqR8IMP4KefsqmfIleQYCAXuxMVnS33uR15P1vuI4TIIINBLR344gv48ku1t3h4+GMvefVVVbpgwABVf0AIkGAgV7NWrkCy+2TXjYQQmfPii/DHH7B7t6peGBKS6qmapmKHwoWhe3e1CZkQEgzkIpMnT0ZL9Mr8VON6nP/zO6vft4Cb7IMqhM1r3hz++UftPV6/vtrfIBUeHvDjj3D6tKp2LAvMhQQDuZjRYMDOaN1/QjcnBwp7u1v1HkIICylfXgUEFSqojUS+S/3NQpUqsHAhLF6sRgpE/ibBQC52/PhxugwZhcFK4/gGTaN6Kf8koxFCCBvn6wt//qnWED77LEyZkupb/z59VN7hiBHw33/Z3E9hUyQYyMUcHR3p1qh6uncnzCizrtO5fmWrtC2EsCJHR1i0CN59FyZPVq/691NOBJ4zB6pXV1WOE+2sLPIZCQZs1LZt26hbty5OTk4EBgaycOHCZOcEBASwbO7/8HJ1JurqeQ7MH8XNo7uTnXf37DEOzB/FnZDD6b6/Bni7OtOiWpmsPA0hRE7RNFVQYPlytY6wZUsIC0t2mqMjrFgBd+7A88/Lhkb5lQQDNujgwYO0bt2aa9euMXnyZAYMGMCkSZP4+eefk51rMGiM7tIY50LFcfDw4fbJfcnOCT+5D6OjM+4lKqS7DzowumsT7O2MWXgmQogc17MnbN4Mp06pxMIjR5KdUrIkLF0Kv/6q9jAQ+Y9sTGuDJk6ciK7rbN26lRIlSgDQvXt3qlatmuL5HetVYv2eE1wtV5NrezYRdz8SOye1AsBsiuPOmYN4BFZFM6bvhd1o0AiqEECHuhUt84SEEDmrfn21jWGHDmrp4cqV8OSTSU556il46y14+211esuWOdRXkSNkZMDGmEwm1q9fT5cuXRICAYCKFSvSpk2bFK/RNI13n29LhXqN0c0m7pw+kPDYvXPHMUVH4VW2ZrrubzRoFPf1YlrfNpI4KEReUrIkbN8ODRtC27ZqKcEjJk1SQUDv3nDxYg70UeQYCQZsTFhYGFFRUZQtWzbZY+XLl0/1Oi9XZ358bwzufkUITzRVEH5yH0YnV9yKpT33rwFl/H35+tWeeLk6Z6b7Qghb5uGhNjZ66SUYOhRGjwaTKeFhoxG+/VblEfTsKRsa5ScSDOQhPu4uvDrkRSIvncYUFYE5zsSdkMN4lqmGZkh9isBo0DBoGgPb1Ofb0b0p4C5FhoTIs+zsYP58mDcP5s6Fbt3g3r2Eh/38VELh7t3w+us5102RvSQYsDF+fn44OztzMoWi4cePH0/z+mef7Y3ZZCLmH2fu7YvEHHMfr7I10dASXvTjPwM42hvp1rAqK8f3ZUT7IEkYFCK/ePllNUqwcSM0bgwXLiQ81KABzJqlYoUVK3KuiyL7aLouhShtTdeuXfn99985fvx4Qt7A0aNHqVq1KiaTifh/soCAAJo1a8aiRYuSXF+2bDVOnfIlKKgQp09vIcJhO31fCsOnxC1i40zY2xkJKOhNpeKFqBbgj6uTQ3Y/RSGErTh4UCUWxsXB6tVQuzag6hQ9+yysXatGCSqkfzGSyIUkGLBBBw4coH79+hQsWJBhw4YRFxfH/PnzKVSoEAcOHEgzGKhc+V2OHJmIi4sTrVq9yC+/zOPYMVWpVAghkrlyBTp3hkOHVNJAly6Amj2oW1flEuzcqXZNFnmTTBPYoGrVqrF+/Xr8/PyYOHEiX331FVOmTKFr165pXnv0KBw50gswExkZSYECvShQAMqVs36/hRC5VOHCqhZB+/Yqh2DmTNB13NzUhkahoTBkiGxolJfJyEAeM2CA2sn0zBmVEdy6NTg4qKE+IYR4LLNZFRr43/9g4EBYsADs7fnuOzVlsGCBWogQT487gx61FmL3Q+wh0O+qBwxeYF8Vzb4GOHVEsyuWE89GZIAEA3nIuXMQGAgzZsCoUWrFUIECMG6cqkoqhBDpsngxDBqkEgtXrgRvb15+WZUm2LYN6tbYj35vFsT8AxgBM6puaWLagw8dHJqguY9Bs5e5Slsl0wR5yKxZ4O6ufodBVR29c0cVHBNCiHTr10/tfLhvnypSdPo0s2ZB/Xox/Lt5JuabPSEmfh8UE8kDAR4cexAkxGxDv9EF/d4CdD0uu56FyAAZGcgjwsJUgbGxY9WOpaCi+OHD4fZtSfwRQmTCyZNqpcGNG+irvud+6cXYswuDIQsvG45PonnNRdNkFZMtkZGBPGLePLVJ2SuvPDy2Y4famlQCASFEppQtCzt2oFergn5pAI5aFgMBgOi/0MNfR96H2hYJBvKAu3fho49g8GDw8Xl4PDhYpgiEEFlUoAD8/Aw0dgbNEi/gOkT/ClE/WaAtYSkSDOQBCxdCRIQqMx4vLEyN8EkwIITICj0uBD1qnsoFtGS7d6eim65atlGRaRIM5HLR0TB7NvTtC8USrd755x/1uWHDnOmXECJv0CO+JOUEwaw2HI0e+a3l2xWZIsFALrd4sSoe9uiGIsHB4O+vkgqFECIzdPMdiFqFWjFgaWaI/A5dj7FC2yKjJBjIxeLi4P33VcGwR0sNx+cLaBYe2hNC5CMxwYAVX6z12xCzx3rti3STYCAXW7kSTp+GCROSHo+NVRuLyBSBECIr9NiDgJ0V72CAuMNWbF+klwQDuZSuw3vvQatWCZuMJdi/H6KiJHlQCJFFsSewzhRBPA09Nu2t2YX1WTPkE1b0++/qRX/jxuSPBQer/Qhq1cr+fgkh8hD9LlZJHkxgBj3Ciu2L9JKRgVxq+nSoXx+aNUv+WHCwGi1wdMz2bgkhMiA0NBRN05JtQ55VkydPRrNEwpBm7feLWjbcQ6SHBAO50PbtsHWryhVI6fd9xw6ZIhAir4uMjGTy5Mls3rzZejcxFEVtRGS1G4DB34rti/SSvQlyoQ4dICQEDh4EwyPh3IULULy42oO8W7ec6Z8QIn10XSc6Ohp7e3uMxoy96F6/fh0/Pz8mTZrE5MmTkzwWFxdHXFwcTk5OWetfxDfod9/FmlMFmudsNOcOVmtfpI+Mz+QyBw7AunWqvsCjgQCoUQGQlQRC5AaapmX5BTsldnZ22NlZ4M+7Qx2smzMAONS0bvsiXWSaIJeZMUMVEurdO+XHd+yAgABVcEgIYX3x8/MnTpygT58+eHp64ufnx9tvv42u65w/f57OnTvj4eFB4cKFmTVrVsK1KeUM9O/fHzc3Ny5evEiXLl1wc3PDz8+PMWPGYDKZEq7z8/MDYMqUKWiahqZpCSMEKeUMaJrGiBEjWLFiBZUqVcLZ2ZmGDRty8OBBABYuXEiZMmVwcnKiWbNmhIaGgl1FsKtA/EvFzj33ear3RbzLncat1Cmad73A9l1RmfzJGcGhEZqxaCavF5YkwUAucuYMfP89jBkD9vYpnyObEwmRM3r16oXZbOa9996jfv36TJs2jblz59KqVSuKFi3KjBkzKFOmDGPGjOHvv/9+bFsmk4k2bdrg4+PDBx98QNOmTZk1axafffYZAH5+fnzyyScAdO3alSVLlrBkyRK6pTE3uHXrVkaPHk2/fv2YPHkyR48epUOHDnz88cfMmzePYcOGMXbsWHbs2MELL7ygggyX/oCZjdsiadb1AnfvmZk4qgDvTvAh/I6JJ5++yK699zPxEzOhuTyfieuEVegi1xg6VNf9/HQ9IiLlx6OidN3eXtc/+ih7+yVEfjZp0iQd0AcPHpxwLC4uTi9WrJiuaZr+3nvvJRy/deuW7uzsrPfr10/XdV0PCQnRAf3rr79OOKdfv346oE+dOjXJfWrWrKnXrl074fuwsDAd0CdNmpRqnxIDdEdHRz0kJCTh2MKFC3VAL1y4sH7nzp2E4xMmTNABPSQkRDeb4/S4sB562dL2eutmLnrcpTK66XJZ3XS5rH7vTKBeqoSd/mQTl4Rj6fuooJtuDNTNZnNGftTCimRkIJe4cgW+/hpGjgQXl5TP+e8/VX1Q8gWEyH4DBw5M+NpoNFKnTh10XefFF19MOO7l5UX58uU5c+ZMmu0NHTo0yfeNGzdO13WP07JlSwICAhK+r1+/PgDdu3fH3d092fEzZ86gaUb2h/Tj5JlYenf14MZNM9dvmLh+w0REpE6LJ1zYujMKszm9uQUG0JzRPKdZZvmjsAhJIMwl5sxRhYSGDUv9nOBgFShUq5Z9/RJCKCVKlEjyvaenJ05OTvj6+iY7fuPGjce25eTklJATEM/b25tbt25ZvI8AxYsXT/F4/P1OhUQCMODVK6m2ffuOGW+vtFZEGAB7NO8v0IyFMtBzYW0SDOQC4eHwySfw0kvg5ZX6ecHBqhCRJZKIhRAZk9LSwNSWC+pprOjO6DLD9Eqt3bT6aTabAXh/+jCqB/4BejRgTnKum2taA80GMHijeX2K5lA9Q/0W1icvG7nAggUQEwOvvZb6ObquVhIkGpEUQuRh2TnEHhgYCIBngeq06jYF/c5EiN6AKkiU1t4FD85x6oTm8SaawdPKvRWZITkDNigmRs37jxgBx47B3LkwYAAULpz6NSEhcPWqrCQQIr9weZA8FB4ebvV71a5dm8DAQD744AMiopwweC9A81kJTp0BB8Kuxz0400DSlxVncO6F5rMGg9f7EgjYMBkZsEEREfDPP+pjwQL1rr9Ll8dfExysPjdoYPXuCSFsgLOzM5UqVWL58uWUK1eOAgUKUKVKFapUqWLxexkMBr744gueeuopKleuzIABAyhatCgXLzqxaVMBPNz8WL3iZdBvoaYDCjDlf5WJuF+KmTOtWc5YWIoEAzbIweHh17qu9h9o2xY6dYIlS8DDI/k1wcFQoQL4+GRfP4UQOeuLL77g5Zdf5rXXXiMmJoZJkyZZJRgAaNasGTt27OCdd97ho48+4t69exQuXJj69eszZMgQNJcWCefqOrw3E6Kj4cknoU0bq3RJWJDsTWCDYmOTBgSgAgJ7e1WOuHz55NfUrKk+vvoqe/oohBCpOXkSypVTX7u6wp49D78XtklyBmzQo6sBjEYoVgx27Uo5ELh7VwUJki8ghLAFW7Y8/Pr+fWjXDm7fzrn+iLRJMGCDNE0FAPFatoR9+6B6Kqtxdu0Cs1mCASGEbdiy5eGbGpMJQkOhZ0/1tbBNkjOQA+JMZkKu3uTYhWuER9xHA7zdnKlYvCAlC3pjNBiIn7x5+22YPDnlHQrj7dih6g9UqJANnRdCiMfQdfjzT4iLe3jMZII//oDPP4dHCisKGyHBQDY6cu4qy7fu57c9x4iOVSGy4cFaYfODV38XR3s61q3Ek52r0amlL8OHp91ucLBaRfC4gEEIIbLD2bNqmXNiFStC06YqmVDYJgkGssGNu5G8+8Nf/LX/FEaDhilRDW/zI/mbkdGxrAw+gKnYfq56VuJOZFM8XFLf79xsViMDo0ZZrftCCJFuBQpA//5QqpR6g/L227Bunfpe2C5ZTWBlO0+cY/SXa4mMjkkSBKSHQdPwdnNm3uDOVCmZcsWho0ehUiU1LCdRtxDClly/Dn5+8O238OyzOd0b8TgysGxFwUfPMmzBz0Tcz3ggAGrU4Na9KF6ct4IDIZdTvkewir7r1ctqb4UQwrJ8fdWSwviiaMJ2STBgJWev3eLVz3/BpJuTTQVkhFnXiYkz8dInPxF2+16yx4ODoWrVlAsRCSFETgsKkmAgN5BgwApMZjNvLf0dk9mMJSZhzLpOVEwsU7/fkGy3sx07ZEmhEMJ2BQWpOij3kr+XETZEggErWLf7KAdCr2RqaiA1JrPO34dD2HokJOHYzZsqZ6BhQ4vdRgghLKphQ7W0cPfunO6JeBwJBqxg6ea9GKywu6jRoPHdln0J3//zj/osIwNCCFtVqZKaxpSpAtsmwYCFHbtwjeMXw7DgoEACk1lnx7GzXL55B1C/XAULQunSlr+XEEJYgsGgRgckGLBtEgxY2N4zl9CsMCoQTwf2h6qVBTt2qF8ya95PCCGyqmFDNZJpNud0T0RqJBiwsCPnr2LQrPdjtTMYOHr+KnFxsHOnTBEIIWxfUJDKcTpxIqd7IlIjwYCFXbpxB5MVw1+zrnPp5l0OHoSICAkGhBC2r359NYIpUwW2S4IBC4szWXccTNd1TGYzO3aoXcFq17bq7YQQIss8PFQ9FAkGbJcEAxbm6uSQ8PW9C6c4MH8U4af2W6x9g0HD1dGB4GCoVQucnS3WtBBCWI0kEdo2CQYsrFxRX+ysuH2grkOZIr4EB0t9ASFE7hEUpOqi3LqV0z0RKZFgwMIqFS9EnJVzBgq7FiQkRPIFhBC5R/zfq/j6KMK2SDBgYQ3Kl8Dezmi19j1cHLlzwR+QYEAIkXsEBqqNi3bsyOmeiJRIMJCCu3fvMnLkSAICAnB0dKRgwYK0atWKPXv2ABAQEED//v2TXdesWTM6tWtLh7oVMSYuQWg2czl4HUe+nMTBT8YTsvZLYu5mfKzMoGk83agau/6xo3hxKFYss89QCCGyl6bJpkW2TIKBFAwdOpRPPvmE7t27s2DBAsaMGYOzszNHjx5N1/X9WtQGHgYD1/7dwN3QI/jVaoFv9Se4d+44Z1Z9ijkuJkP9crS3o1fjGrI5kRAiVwoKUvVRTKac7ol4lF1Od8AWrVu3jkGDBjFr1qyEY6+//nq6ry9VqADD2zfkf5+oChum+5GU6zMOo4MTAM5+xTj3+zfcPPwPvtWbpLvd17s3w8vZjX//haefTvdlQghhExo2VLsXHjoE1avndG9EYjIykAIvLy927tzJpUuXMt1GvxZ1qFC8oGqvQp2EQADAs0x17Fw9uBOavpEGTYNWNcrStUFl9u6F6GgZGRBC5D516qj6KDJVYHskGEjB+++/z6FDhyhevDj16tVj8uTJnDlzJkNt2BkNvNxevWI7efsleUzTNBw9fYm9k3begAY0rVKa6c8/haZp7NihagvUqJGh7gghRI5zcYGaNSUYsEUSDKSgZ8+enDlzhvnz51OkSBFmzpxJ5cqV+e233wD1Yp4S0yMTYU4O9gA0qlgSTVMJgOll0DSMBo2X2jVk1gsdE1YoBAer6NrePjPPTAghclZQkKwosEUSDKTC39+fYcOGsWrVKkJCQvDx8eHdd98FwNvbm/Dw8GTXnD17NsW2SrkZWDyyFzVLFwHAoEH07evYe3gnOzc+YLh7rgSfDn6OIW0bYGdU/0y6roIBmSIQQuRWDRvC6dNw9WpO90QkJsHAI0wmE7dv305yrGDBghQpUoTo6GgAAgMD+eeff4iJebgaYO3atZw/fz7FNr/55htK+7rz1as9WfVmP2q5RBAXcYeCZatiMKgRAG9XZ+6dDaCmdwOWvvwCl9Z349cfkk4vnDsHly5JMCCEyL3i/37J6IBtkdUEj7h79y7FihWjR48eVK9eHTc3NzZs2MDu3bsTVhcMHDiQlStX0rZtW3r27Mnp06dZunQpgYGBKbZZoEABnnjiCQYMGMDVq1dZNncuZcqUYf/qxbi4uCSc16gRRB2HqmVh0CCYNw/GjAE3N/V4/C9PgwZW/REIIYTVxNdI2bEDunTJ6d6IeDIy8AgXFxeGDRvGvn37mDRpEq+99hrHjx9nwYIFjBo1CoA2bdowa9YsTpw4wciRI9mxYwdr166lWCpVgN544w3at2/P9OnT+fDDD2nZsiV//fVXkkAA1PBZ/Av+6NFw9y58/vnDx4ODoUwZKFjQKk9dCCGyhWxaZHs0Xdf1nO6EUH76Cbp3hwsXoGhRGDAA/vxTza85OqrEwcqVYfHinO6pEEJk3ty5MH483LkDDg5pni6ygYwM2JD4XQjjRwfGjVM5AkuXQkQE7NsnOxUKIXK/oCBVL2Xv3pzuiYgnwYAN8feHgICHwUCFCtC1K8yY8bCEpyQPCiFyuxo1wMlJkghtiQQDNubRjTzGj4eTJ+GLL8DdXU0TCCFEbubgoKY9JW/AdshqAhsTFAQrVsD9+ypyrlsXWraEdeugXj0wWm93ZCGEyDZNm0RyaN9R9IjD6OZbgI5m8AL7SmBXCc3gltNdzFckGLAxDRtCbCzs2fNwSmD8eGjVCgoXztm+CSFEVui6DrH/okd8y+QR6zFoJsx3NTTUuxwdM2AGNHTHFmgufcAhKNWqr8JyZJrAxlSrpup3Jx4+K15cfT54MGf6JIQQWaWbrqGHD0W/+RxEq0AAQEMH4h58mOPPhujN6LcGoN/qix53IYd6nX9IMGBj7Oygfv2kwcA//6jPBw48/FoIIXILPXoH+vW2EP33gyOmx56f5JyY/9Cvt0O//6e1uieQYMAmxScRxleACA6GSpWgYkWYPj1n+yaEEBmhR29Hv/Ui6BGkLwh4lAmIRg8fgX7/dwv3TsSTYMAGNWyoNvEIDVXfBwerUsXjxsHq1XDoUI52Twgh0kWPO49+6yXU8H9W6tupa/XwUeixxyzRNfEICQZsUPzeA8HBcPs2HD6sRgt691b5AzNm5Gz/hBAiLbpuRr89HojlYS5AlloEdPTbr6PrsRZoTyQmwYAN8vFRBYeCg1WxIV1XowUODmrjou++g5CQnO6lEEI8RvQfELubzE0NpMYEcccg6kcLtilAggGbFb9pUXAwFCgA5cqp4wMHgrc3PNhAUQghbJIe8Q3WeYnR0CMWI9vqWJYEAzYqKAj274etW9XX8ctsXVzg1Vfhyy9VXoEQQtgaPe4cxP6LZaYHkrUOptMQe8AKbedfEgzYqKAgMJvVUsJHNycaPlwtQfzww5zpmxBCPFastXcg0iB2n5Xvkb9IMGCjKlRQexFERibfnMjbG156CT7+WCUYCiGELdFjD2PdArcG9FhZVmVJEgzYKIMBSpRQX9etm/zxkSPV/gWffJKt3RJCiLSZr2LZxMFHmcB82Yrt5z8SDNgwe3u1MZGzc/LHihSB/v1hzhyIisr2rgkhROp0awYC2XiPfESCARsWFgYmE5w4kfLjr78O16/D119nb7+EEOKxDG5Y9+VFA83Diu3nPxIM2KiwMLh4Ua0iSG3P78BA6NkTZs6EuLjs7Z8QQqRGs6tAahUHl/10hw8/u5XFOxjBvmIW2xCJSTBgo+I3JIovPpSa8eNV2eLly7OlW0IIkTb7yqS2rPC7n+/y4efhWbxBHJp95Sy2IRKTYMBGBQeDvz80bfr4YKB6dWjXDt57Ty1FFEIIS4mIiMjchfY1wOBj0b4koTmDQ1Da54l0k2DARgUHqyWFQUFw9Cjcesyo2oQJavOideuyr39CiLxl8uTJaJrGkSNHePbZZ/H29uaJJ54gLi6Od955h8DAQBwdHQkICOCNN94gOjo6WRsLFiygcuXKODm5Uaz6EUZMCCP89sNEvxbdLvDrhkjOXojD6H8So/9JStfNaG11Izj3QDO4ZvEZi8QkGLBBsbGwe7cqNhRfYyB+2iAlTzyhdjWcPv3htsdCCJEZTz/9NJGRkfzvf/9j0KBBDBw4kIkTJ1KrVi3mzJlD06ZNmT59Os8880yS6yZPnszw4cMpUqQIs2bNolv3nny2JJy2z1wkNlb9YZrwqjc1qjjiW8DI4vmFWDy/ELOn+mWwh3ZoLgMs9GxFPGtWhRCZtH+/Wi4YFASlS0PBgmqk4KmnUr9mwgTo0AH+/ltNLQghRGZUr16dZcuWAbB//36GDx/OwIED+fzzzwEYNmwYBQsW5IMPPmDTpk00b96csLAwpk+fTuvWrfntt98wGNT7zAqBdrw86lOW/niHAc940qqpK/O+COdWuIk+PTK3GkBzH4dmV8wyT1YkkJEBGxQcrHYorFVLrSaI37Tocdq1g2rVVO6AEEJk1tChQxO+/vXXXwEYNWpUknNGjx4NwLoHc5MbNmwgJiaGkSNHJgQCAIOGzcXDw5FfN0RaoGcaOLYCl2ct0JZ4lAQDNmjHDqhTBxwd1fdBQWor48ctH9Q0tbLg999hr7XLggsh8qxSpUolfH327FkMBgNlypRJck7hwoXx8vLi7NmzCecBlC9fPsl5jo6OlC5dkXOX3LLeMcfmaF5z0DR52bIG+anaoODgpJsTBQXBvXsqSfBxnn5aTSvI6IAQIrOcUyh5qsVvm5pZxmJo7hMBByAjbRkBOzS30WheH6FpDlnrh0iVBAM25uJFOHcu6eZEtWurXQrTmiqws1NVCVeuhJMnrdtPIUTeV7JkScxmMycf+YNy9epVwsPDKVmyZMJ5AMePH09yXkxMDCEhIZQsWRLNtQ+a769oxkKogEBDvdg/yoh6aTKAY0s0n1/Q3IagaZLiZk0SDNiAsDC1GqBfP5g6VR2rV+/h487OKn/gcfUG4vXrpxIO33/fOn0VQuQf7dq1A2Du3LlJjs+ePRuA9u3bA/Dkk0/i4ODAvHnz0BMtafryyy+5fft2wnmaXQncvOpy+54LmsdEcOoExlKgeYHmCcaS4NQezX0Cmt8WDN4fodmXtf4TFbKawBbExakX+h07Hi4NLF8eGjRQywXr1VMjBatXp92WkxO89hq89RZMngxFi1q160KIPKx69er069ePzz77jPDwcJo2bcquXbtYvHgxXbp0oXnz5gD4+fkxYcIEpkyZQtu2benUqRPHjx9nwYIF1K1blz59+iS0Wbt2bZYvX87ot/6jbt26uLk9QceOHXPqKYp4urAJAQG6rkKBpB/ff68eX75cfX/lStpt3b6t615euj5qlHX7LITIOyZNmqQDelhYWJLjsbGx+pQpU/RSpUrp9vb2evHixfUJEybo9+/fT9bGRx99pFeoUEG3t7fXCxUqpL/00kv6rVu3kpxz7949/dlnn9W9vLx0QC9ZsqQVn5VIL03XpUyNLRg4EBYvfrhiwGCAAQPg88/VSoELF6B4cfj5Z+jSJe323noL5s5V+QcFCliz50IIIXI7yRmwEc2aPQwEjEY1NbBggQoEAIoVU8FAevIGAF59Ve1V8NFHVumuEEKIPESCARuRuGqgnx+sWqUKDyUWFJT+YMDPT402zJsHmd1rRAghRP4gwYCNKF5crRrQNLXhUKFCyc9p2BD+/RdiYtLX5ujRcPu2mmoQQgghUiM5Azng6q27HDp3lWMXrnE74j5oUMDNmSO7ChLgU5hRI1LejWv3bjV98M8/UL9++u7Vrx9s3AinTycfaRBCCCFAgoFsE2cys2H/SZZt2cv+kMsAGA2GhJwAXdcxmdU/Rf1yJejdpAZNq5TGYHhYrSs2Fjw94d131fLB9DhyBCpXhi+/hBdesOhTEkIIkUdIMJANTl66zptLfuf4xTAMmoY5jR+50aBhMuvULF2Ed55rQ3E/r4THmjSBwoXhhx/Sf/+uXVVQcOSISk4UQgghEpOcASv7Zedher2/lFOXrwOkGQgACSMEB0Iv0236N2w8cCrhsaAg2L79YXGi9JgwAU6cUEmJQgghxKNkZMCKftpxiCnf/ZmlNjTUJiEzX2jPk9XLsno1dO4MZ89CiRLpb6dlS5VMuHv3w+WKQgghBMjIgNUcCL3M1O+zFggA6Kh8gnGLfiXk6k0aNFDH09q06FETJsB//8GGDVnukhBCiDxGggEriI6N481vfs/6tp8PxAcEby75HR9fM2XKpL/eQLyWLdXuh9OnW6RLQggh8hAJBqxgxbYDnL8ejtlsuRkYk1nn8Lmr/P7f8QwVH4qnaWp0YNMm2LnTYt0SQgiRB0gwYGFms86yv/dapW2DpvHd3/to2BD27YPIyIxd37Wr2g1RRgeEEEIkJsGAhe0PvcTFG3ewRlamWdc5ePYKpSrdJC5OJQNmhMEA48bBL7/A4cNW6KAQQohcSYIBCzsQchmDldP1o+wv4+6e8SRCgOeeU5sevf++5fslhBAid5JgwMKOXrhm1aV7dkYDxy5eo0GDjOcNgCpJPGYMLFumlicKIYQQEgxY2LXwewlFg6zBZDZz424kDRuqkYHMVIkYOFCVNf7gA8v3TwghRO4jwYCFpafCYJboYDabCQqC69fh1Km0L3mUqyu88gp88QVcu2b5LgohhMhdcl0wsGjRIjRNIzQ0NM1zAwIC6N+/v9X7lJini5NVpwkMBg13Zyfq11fLBTMzVQAwYgTY2cGHH1q2f0IIIXKfXBcM2LryxfysmkBo1nXKF/PDywsqVcp8MFCgAAwZAh9/DHfuWLSLQgghchkJBiysUvFCVs0Z0HWoXLwQoDYtysyKgnijRkFUFHz6qYU6J4QQIleSYMDCGpQviauTg9XaL+TlRuWSD4OBQ4fUBkSZUaQI9OsHc+bA/fsW7KQQQohcJduDgbNnzzJs2DDKly+Ps7MzPj4+PP300ynmABw+fJgWLVrg7OxMsWLFmDZtGmazOdl5uq4zbdo0ihUrhouLC82bN+dwJqvqxMXF8c477xAYGIijoyMBAQG88cYbREdHJzkvICCADh06sG3bNurVq4eTkxOlS5fmh++X0T2oKkbDw6kCU3QUl/7+maNfT+Xgx2M59s27XPvvL3Q9+XN5HE3TeKZxDYwG9c/WsKEaKchKeeGxY1US4aJFmW9DCCFE7maX3TfcvXs3wcHBPPPMMxQrVozQ0FA++eQTmjVrxpEjR3BxcQHgypUrNG/enLi4OMaPH4+rqyufffYZzs7OydqcOHEi06ZNo127drRr1449e/bQunVrYmJiMty/gQMHsnjxYnr06MHo0aPZuXMn06dP5+jRo/z8889Jzj116hQ9evTgxRdfpF+/fnz11Vf079+fzcE7WWlvR1R0LKbYGE7/+BGxEXfwqdIQe3cvIi+HciX4V+Ii7lCkSdd09UvTwNvViR6NqiYcK1dOzf3v2AGtW2f4qQJQtiz06KGKEA0cqJIKhRBC5C/Z/qe/ffv29OjRI8mxjh070rBhQ3788Uf69u0LwIwZMwgLC2Pnzp3Uq1cPgH79+lG2bNkk14aFhfH+++/Tvn171qxZk7BT4Jtvvsn//ve/DPVt//79LF68mIEDB/L5558DMGzYMAoWLMgHH3zApk2baN68ecL5x48f5++//6Zx48YA9OzZk+LFi7N65XLGPz2Aid/+Qdi+LcTcuUHZZ0bj6OUHgE+VIOxcPQjbsxnfms1wcPdOs2+6Dm/0aI2Hi1PCMU0jU5sWPWr8eKhVC374AZ59NmttCSGEyH2yfZog8Tv72NhYbty4QZkyZfDy8mLPnj0Jj/366680aNAgIRAA8PPz47nnnkvS3oYNG4iJieHll19OsmXwyJEjM9y3X3/9FYBRo0YlOT569GgA1q1bl+R4pUqVEgKB+P6VL1+eM2fO0KleJTrXq8Ttk/tw9S+N0dGZuKh7CR9uxcuBbibi0pl09e3WgdpMGFyaS5eSHm/YEP75B1KYPUm3mjWhbVt4773MFTESQgiRu2X7yEBUVBTTp0/n66+/5uLFi+iJXn1uJ8qEO3v2LPXr1092ffny5ZN8f/ZBTd1HRwz8/Pzw9k77HfejbRkMBsqUKZPkeOHChfHy8kq4V7wSJUoka8Pb25tbt26haRoTe7di+os3uX/jMke+mJjiPeMi76XaHw3QgT7NatGyf2M6dYL69WHtWqheXZ0TFKSWBh45AlWqZOjpJjFhAjRtCuvWQYcOmW9HCCFE7pPtwcDLL7/M119/zciRI2nYsCGenp4qMe6ZZ1JMDswJWjrrBBiNxhSPxwc4dkYDRg0q1W1AdInaxJlNyd7BO3r7pdy2QcPZwZ63erWkba3yaJrGzp3QqRM0agTffQcdO0LdumA0qqmCrAQDjRurwOK99yQYEEKI/Cbbg4GVK1fSr18/Zs2alXDs/v37hIeHJzmvZMmSnDx5Mtn1x48fT3YewMmTJyldunTC8bCwMG7dupWhvpUsWRKz2czJkyepWLFiwvGrV68SHh6ecK+MCAwMxNVO47fP/scXf+xi7e4jRMeasDMaiDMljQzsDAbizGZcHO3p2qAKL7Sqi6+Ha8LjRYvC339Dnz7QuTPMng2vvgo1aqhgYPDgDHcvgaap3IFOnWDrVhUcCCGEyB+yPWfAaDQmmRoAmD9/PiaTKcmxdu3a8c8//7Br166EY2FhYXz77bdJznvyySext7dn/vz5SdqdO3duhvvWrl27FK+dPXs2oJIfM6pnz57s2LGDg7t3MPGZJ/lr2hCm9WnD042qUb6QO0W83Cjh60XN0kV4pkkN3uvXjr+mDeH17s2SBALxXF3hxx/VzoOvvQbDh6upg6wmEarnp0YXpk/PeltCCCFyj2wfGejQoQNLlizB09OTSpUqsWPHDjZs2ICPj0+S815//XWWLFlC27ZtefXVVxOWFpYsWZIDBw4knOfn58eYMWOYPn06HTp0oF27duzdu5fffvsNX1/fDPWtevXq9OvXj88++4zw8HCaNm3Krl27WLx4MV26dEmykiC9xo4dy+rVq+nQoQP9+/endu3aREREcOzgQX5duZLQ0NAM99NgUEsBy5WDl16CihXh5Em1cVEGm0rW7vjxauRh3z414iCEECIf0LPZrVu39AEDBui+vr66m5ub3qZNG/3YsWN6yZIl9X79+iU598CBA3rTpk11JycnvWjRovo777yjf/nllzqgh4SEJJxnMpn0KVOm6P7+/rqzs7PerFkz/dChQym2mZbY2Fh9ypQpeqlSpXR7e3u9ePHi+oQJE/T79+8nOa9kyZJ6+/btk13ftGlTvWnTpkmO3b17V58wYYJepkwZ3cHBQff19dWDgoL0Dz74QI+JiclQ/x61YYOuu7vrOuj6Z59lqSld13U9NlbXS5XS9V69st6WEEKI3EHTdVlMltsdPQpVq4KjI2zYoJYbZsUnn6hdDY8fh0cWVgghhMiDZG+CPKBiRXjqKVU9sHlztdIgKwYMAD8/NRUhhBAi78s3wcCVK1ce+3E7s7v92IjmzSEmBrp3V1UEp07NfAEhJyeVnLh4McmKHAkhREpMZjMR92OIjI7BbMWdW4V15JtpgrRqB/Tr149FuXi3nh07VJ2AXbtg/Xp4+2147jn44gv14p5Rt29DiRJqueLMmZbvrxAid9N1nQOhl1n37zEOhFzm5OXrCculHeyMlCvqR41S/nSoW4mKxQvmcG9FWvJNMLBhw4bHPl6kSBEqVaqUTb2xvOho8PBQL9yvvALLl6vtievUgZ9/VsP+GfXGGzB/Ppw7Bxks5iiEyMO2Hw1l9qq/OXX5BkaDAVMqBeOMBg2TWadyiUKM6dqUWoFFs7mnIr3yTTCQHzRqpN7Nx+cM/POPKk7k5qZKGCeqo5Qu165ByZIqKHj7bcv3VwiRu0RGxzDjx82s+ucwBk3DnM6Xj/hz+zSrySsdn8DRXrZHtTX5JmcgP2jYMGnxoQYNYOdOcHZWj6UxOJJMwYLw4ovw4YcQEWHZvgohcpc7kfd54cMVrN55BCDdgUDic7/dso9hn/xMZHSsVfooMk+CgTwkKEgN6V+8+PBYQABs364Cg7Zt4bPPMtbmmDEQHq5yD4QQ+VNsnIlhn/zM8UthGQoCHqXrOntOX2T0l2skydDGSDCQh8TXF9ixI+lxT081TTBkiPoYMwYeqf6cqoAAtTph1iy1WkEIkf98tn4nh85escgLuFnXCT52lu+27st6x4TFSDCQh/j7Q6lSKe9TYGcHH32khvznzFFLENM79D9uHJw/D8uWWba/Qgjbd+JiGF/8sQtLv4+f88tWLt7I3Uu68xIJBvKYR/MGEtM0tdJg9Wr46y+1M2HiKYXUVK6sdjOcMYNkWzALIfK2RX/9Rzp3dc8Qs9nMd3/vs3zDIlMkGMhjgoJgzx64fz/1c9q3h23bICwM6tVT56dlwgQ4dgxWrbJYV4UQNu7WvSjW7zmOyQrz+yazzo/BB4mKkWRCWyDBQB4TFASxsfDff48/r3p1VaCoSBE1QvDLL48/v0EDaNZMbW8si1GFyB/+OX6OOCsOB0ZGx7I/RMqc2gIJBvKYqlXB1TX1qYLE/P1hyxa1r0HXripJ8HEv9BMmwL//qikGIUTed/T8VewM1nuZMGgaR85ds1r7Iv0kGMhj7OzU0H96ggEAFxf44QeVJDhmjFptEJvKqF2rVlCrlhodEELkfScvX7fqyICmwanL163Wvkg/CQbyoKAgtbwwvcP5BoN6gf/qK1i0SI0U3LqV/DxNg/HjYeNGNcUghMjbIu9bdz7fbNaJiomz6j1E+kgwkAc1bAhXr0JISMauGzAA/vhDJRQGBcHp08nP6dYNypWD996zTF+FEJYxefJkNE3j+vXHv9MOCAigf//+6WrT3s66LxGapln9HiJ95F8hD2rQQH1O71RBYs2aqT0NTCaoX1+tOkjMaITXX1ebHx09muWuCiFsWDEfL4xWzhkoUsDDau2L9JNgIA/y8YEKFZJXIkyvcuXUtVWqQMuWsHRp0sf79oWiRVXdASFE3lWpeEHMVswZiDObqVS8kNXaF+knwUAe9bjiQ+nh46OmDJ59Vr34T5z4MAfBwQFGj4Zvv1V7IQgh8qZaZYpavPJgYpoGNUoXseIdRHpJMJBHBQXBgQNw927m23BwUEmF06fDO++owCC+mNGgQeDhAR98YJn+CiEs4/r16/Ts2RMPDw98fHx49dVXuf+YKmTxuQaPWrRoEWWL+FHaw4gh0eN3Qo9yauV8Dn4ynkOfTiBk9efcv3Elw/00GjSaVi5NQU+3DF8rLE+CgTwqKEiVDs5q1n/8CoIVK1T1wRYt4No1cHODl19WuxmGhVmky0IIC+jZsyf3799n+vTptGvXjnnz5jF48OBMt9elQeWEnQpvHfuX0DVfYLR3xD+oPQXrtuL+rauc/nE+MXduZqhdk1nn2WY1M90vYVkSDORRFSqAl1fm8wYe1aOHKlB05oxKLDx8WAUDBgPMm2eZewghsq5UqVKsXr2a4cOHs2TJEoYNG8aSJUs4cOBAptprUrk09cuVgLgYLv39MwUq16dU58H4Vm9MwdotKPP0q+i6zrV/N6S7TaNB46na5VW7wiZIMJBHGQxqVcG2bbB3L3zySdolitNSr54aaXB3VyMP//4Lgwer3RDv3LFMv4UQWTN8+PAk37/88ssA/Prrr5lqT9M0pj7XmvuXTmGKjsKrXE3iou4lfGiahkvhkty7cCpd7RkNGh4uTozv0TxT/RHWYZfTHRCWt20brF+vNhYKDVVfA7z4ohrWz4oSJWD7dnjmGbXh0dSpaivkhQth7Ngsd10IkUVly5ZN8n1gYCAGg4HQ0NBMt1nY25225QtyAjjz8ycpnmNwcEqzHaNBw9nBns+Gd8fL1TnT/RGWJ8FAHhMbq5YDxsQkfyy+/kBWuburjY1Gj4Y331RbHM+apaYNnNL+eyCEyEYpJQem53GTyZTk+8Je7gBU6jSAaIMjj25kqKVRj0DTNPy9PZg3uDOB/j5p9FpkN5kmyGPs7VPP8G/a1HL3sbODDz9UUwRHj6qKhwsXWq59IUTmnDx5Msn3p06dwmw2ExAQkOL53t7eAISHhyc5fvbsWUAtKV6zBubNCwSgrk83nu/VDfcS5fAKKI97iXK4lyiHW7EyKbZv0DQ0Dfo2r8WPE56XQMBGSTCQB40YAS+8oPIG4vn5QZmUf1ezZPhwWLdOBQevv57xEshCCMv6+OOPk3w/f/58AJ566qkUzw8MVC/yf//9d8KxiIgIFi9eDECbNtCpE1y50gbw4PDBD5jQvRlr3h5An2a18HZTw/1xUfeSte3n4cqLrevx++SBjO7SBCcHGYy2VfIvkwdpGixYAEeOwM6dKrJv0UIdt4a2bVUBol691K6Gf/4JdepY515CiMcLCQmhU6dOtG3blh07drB06VKeffZZqlevnuL5rVu3pkSJErz44ouMHTsWo9HIxx9/xdWrfsA5TiXkBXpgNH7Cnj19qVWrFs888wx+fn400s6zevNaylWuzoCB49A0DW83ZyoWK4iPh2t2PW2RVbrIs65c0XUvL10HXf/gA+vfr2lTXXdx0XVnZ13/8Ufr308I8dCkSZN0QD9y5Ijeo0cP3d3dXff29tZHjBihR0VFJZxXsmRJvV+/fkmu/e+///T69evrDg4OeokSJfTevWfr8LUO6BCiq7cUul67tq5v2rRJb9Omje7p6ak7OTnpgYGBev/+/fV///03m5+xsCRN19O70a3Ijf74A7p3h/Ubo3D1vUVMnAkHOyMlC3pbPJt382Zo3hwaN4atW9XOhq+/br0RCSGE9axcCc899zAZ2d4eBg5Uo44i75FpgjzsyLmrBN84QP2RIby0JCLZ436erjxRqRS9nqhGRQtsFtK0qVqxYDbDW2+pyoUnTqgaBw4OWW5eCJGNKlVSeUceHnDvnlqpVKtWTvdKWIuMDORBoVdvMmnZn+wLuYTRoGF6dA1QIvGP1yxdhMm9WxFQqECW7r16NXTurEYGQkLUO4lGjdS7jAJZa1oIkU3u3lVFxoxG2LgRXnsNvvsODh5US4lF3iPBQB6zbMteZq/6G7OuPzYIeJTRoGHQNEZ3bUrvJjUyfX+zGapVg5Il1SqDrVuha1e1C+LatfBIPRQhhI3RdejdW/3+/vsvlC+vjl29CoUL53TvhLXI0sI85KO125nx42ZiTeYMBQKgNg2JNZl5b+UmPlqX+b2PDQYYNw5+/RX271f5A//8ox5r0AASrV4SQtig+fNh+XK1Y2n58uqYpkkgkNdJMJBHfP/3Pj7/I4tbFD7w+fqd/LB1f6avf+YZNTIwY4b6vkwZFRDUqAFPPgkPli8LIWzMjh2qsujIkfD00zndG5GdJBjIA85eu8UHqyz7lvv9n7dwLiw8U9fa26t9CpYvh9On1TFvb/j9d3j+eejfX5UxNpst1l0hRBaFhUHPnipX4P33c7o3IrtJMJAHTP1+A2YLv7KazWamfp/+LUkf9cIL4OsLM2c+PGZvD59/rv7QTJ+uihRFRVmgs0KILDGZ4NlnIToafvhB/a6K/EWCgVzuxMUw/j11IcM5AmkxmXV2nzzPyUvXM3W9s7Maavz6a7h8+eFxTVOjBj/+qBKUmjWDK1cs0mUhRCZNmaJWDXz3HRQtmtO9ETlBgoFcbuX2gxgN1qnqYzRorNh2INPXDxumdjGcMyf5Y127qpUG589D/fpqyZIQIvv9+iu8847ajrxly5zujcgpEgzkctuOhFh8VCCeyayz/Vhopq/39ISXXlJFh27dSv547dqwa5eqP9CoEfz2W+b7KoTIuNBQ6NMH2reHCRNyujciJ0kwkIvdi4rm4s07Vr3Hxeu3ibgfk+nrR45Ulcse2UgtQbFiaoSgWTPo0EEtaxJCWF90tFox4OkJS5Yk3eVU5D/yz5+Lnb9+2+r30IHz18MzfX3hwiqZ8MMPITIy5XPc3ODnn+HVV+GVV+DllyEuLtO3FEKkw8iRcOCAqg7q7Z3TvRE5TYKBXCw2zpQt94nJ4n3GjlXTBF9+mfo5RiPMng2ffqqmFTp1gjvWHfQQIt9aulT9rs2fr6brhJBgIBdzsDcmfH100Tuc//M7q9zH0T5r+1mVKqUKEX3wgZoyeJwhQ1TuQHCwyiM4ezZLtxZCPOLgQRg8GPr1g0GDcro3wlZIMJCLlfDzsvr2wJqm7pNV48bBuXOwbFna57ZqpYKBiAi10mDnzizfXgiBGm3r3l3tEbJggWwvLh6SYCAXc3F0oLivFwDl+06gWIueFr9HCT9vnB2yXoGkalWVIDhjRvoqD1aqpIKAwECVXLhiRZa7IES+pusqf+fqVZUn4OKS0z0StkSCgVyuSeVSasdBox2a0fjYc82x0Rlq22jQaFypVFa6l8SECXD0KPzyS/rO9/ODv/6Cbt1UmdT//U/9QRNCZNzcuarY19dfy+6hIjkJBmzc5MmT0TSNU6dO0b9/f7y8vPD09GTAgAFERkbydKNqmMx6spyBm0d3cWD+KO5dPMXFzSs5/MVEjn49NUP3Npl1nn6imsWeS1AQNGkC772X/hd1JyeV7DR5strPYMAAtSRKCJF+27bB66+rTYi6dcvp3ghblLXMMJFtevbsSalSpZg+fTp79uzhiy++oGDBgsyYMYPGlUpxLJXrLm7+ETtnNwrVbYU5Lv31AowGjeolAmha1xt/fyheXJUYjv8oUEAtBfT0zNjzmDABnnoKNm2CFi3Sd42mwaRJ6t3MgAFw5oxaiujjk7F7C5EfXb2qRtYaNlR7ggiREgkGcomaNWvyZaK1eTdu3ODLL79kxowZvNmzBZ+PSzkTyOjoQukuL6FlsKKIg50dw1u15JuxKvFv5061/E/T1Jy/2axKCletmrHn0aYN1Kyp/iilNxiI9+yzEBAAXbpAgwawdu3D/daFEMnFxUHv3ur3dfly2YBIpE6mCXKJoUOHJvm+cePG3Lhxgzt37uBfwAMvV6cUr/Op3CDDgQDAW71aUqeqO9988/CYyaT+uGgatGuX8UAA1LXjx8OGDfDvvxm/PihIBSb29iog2LQp420IkV9MnAhbtsD334O/f073RtgyCQZyiRIlSiT53vtBybBbD4r+OzvYU7lEoWTXOXikfyw9fmxhdJcmdKhbEVDvxp9+Wo0KxDOZoEgRuJ3JAojdu0OZMpkfsixVSi09rFsXWreGr77KXDtC5GVr1qjfsf/9T63IEeJxJBjIJYyprBTQE2XiBfr78L++bXFxtMfwYAGxZpe+cUGjQcPZ0Z7/9W3L8y0eliTTNFWpzNdX1S43GqF6dfj2W7Xs78MPM57QZzSqZKaff4ZjqSU7pMHLS22B/OKL6mPcuPQtWRQiPzhzBvr2hc6d1e+aEGmRYCCPaV+3Iqve6Ee5or5A2puPGAwaGtC4cilWvdmf9g9GBBIrUEBtZGI2g52dehE+eVLlDIwaBRUrqn3QM/Ji/PzzathyxowMPLlH2Nur0sWzZ8PMmdCjhypUJERec/NuJNuPhLLqn8P8FHyQP/aeIPTaLcwp7Fh6/776XfD1hUWLpLCQSB9JIMyDCnm781zTWmxYBO3rVORcrBNnrtxIstWx0aBRurAPjSoG8HSjqhR7ULwoNa1aqXXKnp5QtKg69vnn8NprKgfg2Wdh1ix4//30JQY6OqpAYvx4tY968eKZe66apvoQGKj60LQprF6tpjGEyM1u3I1k1Y5DrAw+yKVUdid1drCnTc1y9GpcnUoPpglfflnV89ixQ42gCZEeEgzkcc82rUmdOnWIiY3j0s07xMSZcLAzUqSABw4Z3HPg1VeTH6tUSb34/v232pCoZUto21a946+WRomCwYPh3XdVEDF3boa6kkynTmotdYcOqoTxmjVQo0bW2hQiJ8SZzHy9YTef/vYPJl1PMhX4qKiYWNbsPsKqnYd5olIAFQyt+OILN778Uv7/i4yRaYJ8wsHejoBCBShX1I+AQgUyHAikpUkT+OcfVTb41Cn1h6h/fzh/PvVr3N3Vu5jPP4fr17Pehxo1YNcuKFQInnhCBQRC5CZXb93luQ+W8dG6YOLM5scGAvHiR/x2HDvLwj2L6Db4NC+8YO2eirxG09Pzv02IDIiNhc8+gylT1MYor76qig2lNGR5/TqULKkqo03NWIHEVEVEQJ8+quzx7Nnq/jJvKmzd5Zt3eH7Ocm7cjUgypZdRBk3jvX5P0aaWFOEQ6ScjA8Li7O1h+HA4fVpl+X/0EZQurV6YH1154OurtlGdPx/u3rXM/V1dVQ32sWNVPsGwYWlvnSxEToqOjeOlT37KciAAaoXR+MW/cfDsFQv1TuQHEgwIq3F3V6MDp06pcqivv64qBn77bdKVB6NHq3fzCxda7t4Gg8pb+OIL9dGhQ+brIghhbZ/8toPQa7eyHAgA6AAavPHNb0THxmW5PZE/SDAgrM7fX9UqOHRIlSLu0wfq1FFVCEGtJOjTJ+WRg6x68UVYv17lEgQFQUiIZdsXIqtCr95k0V//WnRHTrNZ5/z1cJZu2mO5RkWeJsGAyDYVKqhCQ9u2qd0IW7VSexXs26emE65cIUn5Y0tp0UIlN0ZHq5UGwcGWv4cQmbV82/6EImGWpOvw7Za9xJmkGpdImwQDIts1agTbt8NPP0FoKNSqpZYYtmmj6hSYTJa/Z/nyKiCoUEEFB999l/Y1QlhbTGwcq/45bJHpgZTcuBvJ9qOhVmlb5C0SDIgcoWmqguGhQ7BgAfzxB2zcqPILFi2yzj19feHPP6FXL1WgaMoULDo0K0RGnbh0ncho62W32hkN7Dl9wWrti7xDggGRo+ztYehQFQS88Ybat2DIEFVe+P59y9/P0VEFG9OmweTJqn67Ne4jRHocOX8Va656jTOZOXT2qhXvIPIKCQaETXBzg0mT1FarJpMqU1y+/MM9ESxJ0+DNN9X+7j/+qKomhoVZ9h5CpMelm3cwGq37Z/j89XCrti/yBgkGhE3p3h3q1VOrDooXVxsaFSigVgRYeki/Z0/YvFmNStSvD0eOWLZ9IdJirVyBxCSBUKSHBAPCppjN0Lgx/PefSjIEtQqgbVu1+mCPhVdK1a+vlh26uqqlh/HLHYXIDk72dg8KA1iPs2P6tjEX+ZsEA8Jm7N4NZcqojYsSK10aVq2Cixehdm147jnL1gsoWVIFHg0bqqDDksWPhDhzBpYtg717ISoq6WNl/H2IezAPFnP3Fld3rufk8jkc/uxNDn/+Nqd/+pi7505k+t4GTaNC0YJZ6b7IJyQYEDbjyhU4ezb5PgKOjtC5Mxw8qF6oN25USwRHjYIbNyxzbw8PtbHRSy+phMbRo62zxFHkPwsWqAC2Vi2VGxMQoHbZ7N8fTu4tlHDenTOHuLZnI45evhRq8BSF6rbCHBNNyC+fcvPIrkzfv1IJCQZE2mSjImFT/voLevRQ+xTEvxjXr69qBMSLiIA5c1RNAoNBbYL0yivg7GyZPsyfDyNHqhLG336r/oALkVlr1qgX/5T4+ek0eHkR58LCibpxBTsXN+ycH/6HM5viOPndB5hjY6g4YGKm7v/jhL6U8ffN1LUi/5CRAWFTWraE/fuhatWHIwSPriZwdYW33lKJf337qq/LlVNLBi3xbv7ll9Uf8I0bVf7CBVmmLdJp8uTJaJrGiRMn6NOnDx4enjz7rB/wNio54DzQGfDAYCjMkCGzebZpTQCcfAonCQQADEY73EtWJPZeOKaYjK2BNWgaNUsXkUBApIsEA8LmlCgBO3aoF3qAa9fU55t3I9l+JJSv/tzN/LXbWbE7mMa99rNm8xXqN4xjwAC1CuG337K+8qBdO5VHcOOGGpn477+stSfyl+bNe7F+vZm7d9/j3r36wDRgLtAKTStKkSIzqFOnDNOmjcE75gZebs4YUik4EBd5F83OAYOdQ4b6YNZ1Braul8VnIvILmSYQNu2NN03ctj9FhNc+9p65BKh3PIYHfznjl0052hupX7ISe9dVZ/sffjRvrqYR6tTJ2v2vXFH5CocOqSmDLl2y1p7Ie0wmFbyuXg1ffjmZmzenYDQOpkOHhXTqBE89ZaJy5QBu3bqIpk2nXr1x/P47QDhFihShZ8+eDBgzkVc++yVZ29HhYZxYNhPPMjUo0frZdPfJoGm0q1OBd/u2tdwTFXmajAwIm3Xk3FWOuCxl281f2R9yOeG4WdeJM5mTrJ+OjjWx/cwh7pZfyovvbeDq9Rjq1oXevVU2d2YVLqxqEbRvD926qcqIEj6LiAi1wmXAAPV/pHFjWLxYrUwB2LRpIKtWwQsvgL+/kQYN6gA6DRu+yIYN4OUFXl5elC9fnjNnztC0Sml6Na6e5B7m2BjO/vYNBjt7/IPap7tvRoNGkQIejOvezELPVuQHEgwIm7R00x6em/Ud58JuASoASEt8AZf/Lh2iSOfFzPjoOn//rVYejBwJ169nri/Ozqoy4oQJ8PrrMHgwxFqvnLywUZcvw+efq8RSHx+1t8auXTBwoNoJ8/Llh4mC5cqVSHJtwYKeODo6sWmTb5KEVE9PT27dUv/Hx3VvRse6FQHQzWbOrl9C9M0rlHyqP/Zununqo9GgUcjLnS9feRoPF6esP2mRb9jldAeEeNSXf+5i3poHFYcy8S7crOvcuBvB6pgfWL+tJ6u/8+W99+Drr1WZ41dfBReXjLVpMKidFcuVg0GD1GjDypXg7Z3x/oncQddVVcpfflFTADt3qv8HTzwB//sfdOwIZcumfK3RaEx2zM7OiEMK0/7xM7VGg4Gpz7WhTBFfxrwynLshRyje5jnciqdyk0Q01K9Kk8qlefuZJ/Fxz+B/cJHvyciAsCmbD55+GAhkgcmsExkdw2tf/cyro2I4fVqt6540Sb2gf/ll5lYe9Oundj7ct08VKTp9OstdFTYkLk5NC40apQpgVamiXviLFVPTANeuwZYt6vHUAoGsMBg0Dv++nBtHdtGoxwAKlKuF0aClupmR0aD+hBf19eS9fu2YM7CjBAIiUyQYEDbjdsR9Ji37M1nRocwymXWu34lg9qq/8fODDz+EY8fU/O7AgVC9Oqxdm/EcgKZNVd0DXVcrDbZutUx/Rc64exdWrFCrVwoWhObN1bRQq1bw669qemnlSrVPho+Pdfsyc+ZMPvjgA9544w22rfiStZNeYGDretQrVxw3p4fDCnYGA+WL+tG1YWU+G9GdtW8P4Kna5dEs9csj8h2ZJhA247P1O7kTdd+iCXpmXWdl8EF6Nq5O+aJ+lC4N332nKgy+/roa6m3SRCUG1svAKqyyZVUGeffu8OST8MUXD5dCCtt34YKqJfHLL7BpE8TEQLVqMHy4Wj1Sq5aaEshOP//8M6+//jply5alYsWKLF26FAAPoIkXTO3RHR9fP0xmHQc7Y8KKGiEsQYIBYRMio2P5acdBzFbYxc1o0Phh237e7vVkwrE6dVS1w99/V0FB/frw9NNqSLhMmfS1G7+b4ksvqXeNJ07AlCnZ/yIi0qbrqpjV6tUqANizB4xGNcozc6YKCkuVytk+7t+/H4CTJ0/SN4XIctOmTTRrVhjZdkhYg9QZEDZh7e6jvLnkd6u172hvZOt7w3C0Tx7/mkywZAm8/baqKzB0qPq6YDpLuuu6qmkwfrzaFnnRIsuVRhaZFxMDf//9MAHw3Dm1B8VTT6l3/23bSgKoEPHkPYywCftDLmFntN5/x+hYEycvpby20GhUyYUnTsC0aSowKFNGfR0RkXbbmgbjxsGPP6qh5+bN4epVy/ZfpE94uJoGeuYZ8PNT8/6//KKW/P3xB4SFqXyA3r0lEBAiMQkGhE04EHo5SREhS9OAI+dTfoXev18tIXN2Vi/qp0+rBMN33lG5AZ9/rrLM09Ktm3onevasmnY4dMiyz0GkLDQU5s1TuRt+fvDss3DypMr437tX/XvMn68Cg5SW9gkhJBgQNuJa+D2rtm80Grh2++Hb/Bs31AtE1apQo4aqJBfPxwdmz1YrD5o3V0WGqlVT7zDTmlSrU0cVovHygqAgHpSdFZak6/DvvzBxoloRUqoUjBkDdnZqxci5c2oviUmT1L+tJNgLkTZJIBQ2IT0VBrPKZDKzbJlaRrZ2bdI6AwUKJD+/VCm1H0H8yoMuXVTBmZkzoUGD1O9TvLhabvjss6qM8bx5KktdZF50tNpFcvVqNRVz8SIUKBTFE09dpfWAm5QuY8Ld1UiJgl44exYCXHO6y0LkKpJAKGxCu8lfcvHmnceec/qnjwEI7JbxV1ajQaOubxCfvZ18/aCmQeXKqqCQv7/6KFJEffbwUI/ruppzHjdOTSt0765WHpQrl/o9TSb1jnXuXHjlFTXakEJhOpGKGzfUOv9fflGrNu7dg1JlYqnb7hi33fdx+Y7KAdE0DcODf6P4oDKgoDfPNKlBx7oVcXN2zMmnIUSuIMGAsAmjv1rLxv2nHjtCkJVgAGDeoC4s/6QUn38OZrP6APViX6CAyj6/ezfpNc7ODwODIkXUpjRXrsCGDSpZrWdPmDxZBQWpDUd/+imMGAFt2qjkNXf3THU/Xzh9+mH2/7ZtKqCqV09l/xetdpqvtv9JeERUQoCWmvh/ClcnB97s2VIK8giRBgkGhE346s/dzF+73arBwMZ3h+Dj7sLp0yoPYOPGhy/gH30Ew4ap1QOXL8OlS0k/P/p1eHjSto1GVbK2aNGkIwvxX4eEqFGCgABYtw5KlHi0d/mT2axyLOIDgCNHwNFRJQN26qTW//sWNPHu8r/4+Z/DaQYBj4qv2d+qRlne7ds2xaWlQgjJGRDZJCIiAlfX1OdxW1Yvw4drtlnl3gZNo2pA4YSa7YGB6p39smXqHXt4uHrBBnB1VcsK0yo8FBWlgoLjx+GTT9RwdliYGjm4fVslH16+DDdvJr3u0CGVi1CpklqpEB8w2NurJMX4IMLXN+8WL4qKUj//+Pn/q1dV0maHDmo5Z6tWJOzsF2cyM+brdWw+qDaByOhbl/jT/9p/ituRq/hoSBcJCIRIgfxWCIubPHkyU6ZM4fDhw0ybNo3ffvuNgIAA9u7dy9KlS5kzZw5HjhzB2dmZ1q1bM3PmTEoWL079ciXYffK82nXw0A7C/ttIbMRtnHz8KfJE50z3x6zr9G5SM8kxTYPnnlOFZ779Vg3hZ4SzM5QurT6eekotX3v7bVi6VE0ZTJ+uEg6jo9W0QvzIwokT8PHHcPSoGk04fVodu38/aft2diqwSGmUIfFnP7/ckYdw7ZoaEfnlF5V7ERWlgqG+fdUUQMOGKT+P+Wu3sfnA6cxsXpmEWdf59+QFpq/YxORnW2WxNSHyHpkmEBYXHwxUqlSJsmXL0qZNG3Rd59atW7z99tv07NmTpk2bEhYWxvz583Fzc2Pv3r2cuRHBgA9/4Obhf7iw8Qdc/APwKluTmDs3uHV0N0ZHF+zdvTI0TWA0aBT39WLl+L7Y21n/VXPfPpVk+McfamnhzJnqc2L376uljN9/r4bCV69Wx7t1U6sWUpueuHRJjT4k/o01GqFQodSDhfivCxZUAUZ2OnZMPbfVqyE4WB1r2FC9+HfqBBUqPP76/SGX6DdneZYDgUctGNqVRpUCLNyqELmbjAwIq6levTrLli0D4OzZswQGBjJt2jTeeOONhHO6detGzZo1WbBgAW+88Qa9GlVh0hcTcfItSumuwzAY1X9RR+9CXNy0Ant3rwz1Qdfhf8+3zZZAANS69vXr1TbH48ZBo0ZqhGD69Icvfk5OaorCYFCf461eraYc6tdP3q7ZrLPn9EX2nL7EvtPXuBB2h5gYMwazE04mP7hbiOjLAfz7rxOXL6uhd3OiGk6apgKC1IKF+M+FCqkpi8wwmdTmTfHz/ydOqBGU1q3VRk4dOmSkxLPOO9//haZpWPL9ikHTmPr9n/w6+cWE7X+FEBIMCCsaOnRowtc//fQTZrOZnj17cv36w7LAhQsXpmzZsmzatIk33niDIH8n4qLu4d/wqYRAAKBAxXpc3r4mw314rXNjKpconLUnkgmtWkHLlqo07ptvQpUqqqrhpEnqhffwYVi1iiQJcWazqnb45psP24mJjeOHbQf4dsteLt28g+FBxmPiREs7w0XiHMzYBxrp2KsC/Z+sS3Efb65dSz0Zct8++O03NYWRuN6Cpql8hcdNTfj7qykMR0eVcPnHH+rFf+1atd1voUIq8e+DD9TPwMUl4z+//SGXOXk55fLRWWHWda6E32P70VCaVC5t8faFyK0kGBBWUyrRNnAnT55E13XKli2b4rn2D96OXrl0EYDAMmUI17SEFz3NaMTBM32bycdnkL/coRHPt6id+SeQRQaDykvo0UPlCcTvezBmjEqgi4xMer7ZDHPmqKkCe3s4fO4Kby75ndCrtx6ek8K75LgHQwCxcSZW7zrC2t1HebnjE/RpVhN/fwO1aqXeR5NJvYCnNjVx5Ijq65UrEBub9Fp7e1WmWdfB01MlRT7/vBrZKFZMBQ2ZffP9Y/BBjAYNk5V2sVy5/aAEA0IkIsGAsBrnRFv3mc1mNE3jt99+w5hCpphbfPr4A693a8aBe/Ys27IPQ6KgIC0Gg4aHsyOTereiRbV07kVsZY6Oqk7+Cy/Ae+/BjBlq1cKTT6rCOvv3PxzSv3FDFSmq1Owoby1dr0YOMnAvk1nHhM7sVX+z8/hZZr/YCSeH1H/N43MOChVSUxwp0XU4eBCWL1fZ/wcPqhGEokXVh6urqs9w6ZJaojl7dtLrvb3TToT09086gvDvqQtWCQRA/Yz2nL6IrutSe0CIByQYENkiMDAQXdcpVaoU5R5Ttq9kyZIAnAsNYdyQIbSqUY5Pf/uHf46GEHvnJkbfIsmusTMYiDObcXawp1vDKgxuWx8vV9vbQ9jLSwUDw4eruvqLF6sljIsWqVUBf/yhcghOhh/n2yW/qyAgC6+HO46d47UvVjNvSGfsM7jkIC5OFf2Jn/8/c0a96Ldtq0Y22rdXywEfpetw61bqdRrOnIHt29XXj66g8PRUQUGhotHcqvT4apRZdTcqmiu37uJfwMOq9xEit5DVBMLi4lcThIWF4evrC8Dp06cpX748vXr1YunSpUnekem6zs2bN/Hx8SE2NpaiRYtStGhRdu7cicODbebemzWXCWNeo1i5KlTtPZJ792MwGDQKerpRNaAwNUoVoWX1srg4ZjL7LQccOADjx6u5+wYN4P33IaBCON2mf0NsnMkiWfQaMPSphgx96jGbKTxw967aWGn1arUM8NYt9c69Uyf10by5Sn60hPnzVYnmggVVgFGzpqoAefkyhF67wRmfbyxzo8f4+tWe1AosavX7CJEbyMiAyBbxKwkmTJhAaGgoXbp0wd3dnZCQEH7++WcGDx7MmDFjsLe3Z9q0aQwZMoQWLVrQq1cvQkJC+PrrryldujTF/X34dfKLOf10LKJaNVWsaONGlSfQpIlO3UHrMbmYLbacTgcW/v4PzasFUr6oX7LHL1xQQ/+//AKbNqkX5GrV1OhF585Qq5Z1ih/Fl2S+dk3VeViyBJo1gz59YEBTM30/tPw9H2VKvNxCiHxOggGRbcaPH0+5cuWYM2cOU6ZMAaB48eK0bt2aTp06JZw3ePBgTCYTM2fOZOzYsVStWpXVq1fz9ttv51TXrapFC1WSd/qnZ/nh2CWw8GuUpsGCX4P5cFBndF3lKKxerQKAPXtU3kDTpqomQseOqkKiJem6qvKYeNpg69aHj8evZti0SX3UaGAPdS3bh5S4OjpY/yZC5BIyTSCEjRjx6SqCj4VaJXFOA+rqA/ljtTvnzqndGJ96Sr37b9tWJflllK6rcsvp2cvh0fwANze1C+GjKlaExd/oDP/uI6Jj4wC4cXA79y6cIvLKWWLvheNdoS7FW/XOeIcTMWgaO2aOeGxypRD5ifwmCGED7kVFs+1oSIZr76eXWdfYfPgEnTrVplMnNRLgkMobY7NZrWpI7YU98dcxMUmv9fZ+uEKgTBlo3Dj5qgF/f7Ws0u/BrIXRqIKDefNUeWJN06i4tSD7Qi4BcO2/jZhjo3EpWILYSMskFpYs6C2BgBCJyG+DEDbg6IVrVgsEAOyM0LXvFUa3Uy/mGzak/o7+8mW1miAxX9+HL+oVKqhkwkeXChYunP4EQ2dnVR45Lg5691b1FR7kmgJql8H9oZfQdbVLpb27N5qmcejT8Vn+WRg0jVY1Uq53IUR+JcGAEDbg2IWwDNVTyCiTWWfN5qvMfOHhMU1T787jX9SrVFGlgx+tBVC4cOqjCOkRv7rk+PHjTJ06lTVr1uDg4EDbtkMZOXIq5cpd4MUXR7Bp0yZcXFwYO3Ysg14aztw124iNM+HgUSDrP4BH9AiqavE2hcjNJBgQwgbcibyPwaBhNllveMC9wH1++SXp5kWZ3YcgM3r16kXFihV57733WLduHWvXTqNFiwIMH76QFi1aMGPGDL799lvGjBlD3bp1ea5pDRZv3GPxvQk61a9EIW93i7UpRF4gwYAQNiA7CuE5OWokWrSR7erVq8fChQsBtWIkICCA0aNHM336dMaNGwdA7969KVKkCF999RWffvYFG/ad4tLNOxYZMTFoGt5uzozu0iTLbQmR18i2XULYgAJuLphM1l33XsA9Z6syDhw4MOFro9FInTp10HWdF198WDfCy8uL8uXLc+bMGZwc7Jg5oD32doaEDZoyS0MlJs7o3w4PFwtVThIiD5FgQAgbULF4QYsVGkqJ0WCgaoC/Fe+QthIlSiT53tPTEycnp4QqlYmP37qlNmeqVKIQC4Z2w8HOiNGQuYDAaNCwMxqYO6gjdcsWz1znhcjjJBgQwgaUK+qHndF6v45m3UzVHNjKObGUNqhK6RiQJE+gTtliLBvzLGWL+KZ47uNoGhT39eKb156RXQqFeAwJBoSwAc4O9rSpWT7T737TYmcw0LpW6htE2bpAfx++Hf0s9kYjjvYqgLBLpU5y/HEvVyeGtQtixbg+VCpRKNv6KkRuJAmEQmTC3bt3efvtt1m1ahWXL1/G09OT6tWrM2PGDGrVqkVAQADNmjVj0aJFSa5r1qwZAJs3b0743Lx5c5YvX074nl0c/OJzzDHRuJcoT7GWvdDs7LmyfQ23TuxFj4vBs0x1ijZ/GoMx/b+6RoNG29rlbXInx4ywMxqwMxpoVbMcAwZ2Ysexsxw8e5mQq7eINZmwNxoo4edN1YDC1CtbnBbVymBvl7HdGoXIryQYECIThg4dysqVKxkxYgSVKlXixo0bbNu2jaNHj1KrVq0Mtzd9+nScnZ1p3OkZDh09Sti+bWAwomkapuhICtVrQ+SVs9w6uhsHjwIUqtcm3W3b2xkZ3i4ow32yFWvWrGH//v0AxMbGcujgQbav/g6ACZ06Ua1atZzsnhB5ggQDQmTCunXrGDRoELNmzUo49vrrr2e6vbi4OLZs2cLd+7F0fncRsZERhJ/Yi3vJ8pTqNFidVK0RMbevc/PIrgwFA2O7NsW/gEem+5bTfvzxRxYvXpzw/d69e9m7dy8AxYoVk2BACAuQnAEhMsHLy4udO3dy6dIli7T3/PPPY29vTwF3F+YN7oybf0lAx7tS/STnuRQuQey9cHSzKV3t9giqSvccrrY3efJkdF1Ptmpg0aJF3Etht6LNmzdz6NChJOfpup7iR//+/a3dfSHyBQkGhMiE999/n0OHDlG8eHHq1avH5MmTOXPmTKbbS7zsrmbporzY7gkAnDySbidocHACXccU/cg2gInEL8nv3aQGb/ZsiZYdFY2EELmaBANCZELPnj05c+YM8+fPp0iRIsycOZPKlSvz22+/AaT6AmwypfyO/tEldgEFVT3+agFF1OPJVhmkXJVA0zQ8XZz5cFAnxvdojsFKqxOEEHmLBANCZJK/vz/Dhg1j1apVhISE4OPjw7vvvguAt7c34eHhya45e/Zshu7xevdmfDSkCw3KlyDxy7rRoGHQtCTL6wp5uTGy0xOsebs/zaoGZuYpCSHyKUkgFCKDTCYT9+7dw9PTM+FYwYIFKVKkCNHR0QAEBgaydetWYmJicHiw5d/atWs5f/48pUunv/iNpmk0rlyKxpVLcTX8HmPHn2HJrj9oVaMcDq7uuDk5UK6oH5WKF6RCsYIYU1l7L4QQjyPBgBAZdPfuXYoVK0aPHj2oXr06bm5ubNiwgd27dyesLhg4cCArV66kbdu29OzZk9OnT7N06VICAzP/jr2QlxulC/sAMOHpFskS8oQQIrPkbYQQGeTi4sKwYcPYt28fkyZN4rXXXuP48eMsWLCAUaNGAdCmTRtmzZrFiRMnGDlyJDt27GDt2rUUK1Ysh3svhBDJabolNwsXQgghRK4jIwNCCCFEPifBgBBCCJHPSTAghBBC5HMSDAghhBD5nAQDQgghRD4nwYAQQgiRz0kwIIQQQuRzEgwIIYQQ+ZwEA0IIIUQ+J8GAEEIIkc9JMCCEEELkcxIMCCGEEPmcBANCCCFEPifBgBBCCJHPSTAghBBC5HMSDAghhBD5nAQDQgghRD4nwYAQQgiRz0kwIIQQQuRzEgwIIYQQ+ZwEA0IIIUQ+J8GAEEIIkc9JMCCEEELkcxIMCCGEEPmcBANCCCFEPifBgBBCCJHP/R80EXEsWhyigwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -129,7 +103,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -162,95 +135,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mWARNING: The directory '/home/gerald/.cache/pip' or its parent directory is not owned or is not writable by the current user. The cache has been disabled. Check the permissions and owner of that directory. If executing pip with sudo, you should use sudo's -H flag.\u001b[0m\u001b[33m\n", - "\u001b[0mRequirement already satisfied: openeo_processes_dask[implementations] in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (2023.7.1)\n", - "Requirement already satisfied: dask-geopandas<1,>=0.2.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (0.3.1)\n", - "Requirement already satisfied: dask[array]>=2022.11.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (2023.7.0)\n", - "Requirement already satisfied: geopandas<1,>=0.11.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (0.13.2)\n", - "Requirement already satisfied: odc-geo<0.4.0,>=0.3.2 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (0.3.3)\n", - "Requirement already satisfied: openeo-pg-parser-networkx>=2023.5.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (2023.5.1)\n", - "Requirement already satisfied: planetary_computer>=0.5.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (1.0.0)\n", - "Requirement already satisfied: pystac_client>=0.6.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (0.7.2)\n", - "Requirement already satisfied: rasterio<2.0.0,>=1.3.4 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (1.3.8)\n", - "Requirement already satisfied: rioxarray<1,>=0.12.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (0.14.1)\n", - "Requirement already satisfied: stac_validator>=3.3.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (3.3.1)\n", - "Requirement already satisfied: stackstac>=0.4.3 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (0.4.4)\n", - "Requirement already satisfied: xarray>=2022.11.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo_processes_dask[implementations]) (2023.6.0)\n", - "Requirement already satisfied: distributed>=2021.06.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (2023.7.0)\n", - "Requirement already satisfied: packaging in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (23.1)\n", - "Requirement already satisfied: click>=8.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from dask[array]>=2022.11.1->openeo_processes_dask[implementations]) (8.1.4)\n", - "Requirement already satisfied: cloudpickle>=1.5.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from dask[array]>=2022.11.1->openeo_processes_dask[implementations]) (2.2.1)\n", - "Requirement already satisfied: fsspec>=2021.09.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from dask[array]>=2022.11.1->openeo_processes_dask[implementations]) (2023.6.0)\n", - "Requirement already satisfied: partd>=1.2.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from dask[array]>=2022.11.1->openeo_processes_dask[implementations]) (1.4.0)\n", - "Requirement already satisfied: pyyaml>=5.3.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from dask[array]>=2022.11.1->openeo_processes_dask[implementations]) (6.0)\n", - "Requirement already satisfied: toolz>=0.10.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from dask[array]>=2022.11.1->openeo_processes_dask[implementations]) (0.12.0)\n", - "Requirement already satisfied: importlib-metadata>=4.13.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from dask[array]>=2022.11.1->openeo_processes_dask[implementations]) (6.8.0)\n", - "Requirement already satisfied: numpy>=1.21 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from dask[array]>=2022.11.1->openeo_processes_dask[implementations]) (1.25.1)\n", - "Requirement already satisfied: fiona>=1.8.19 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from geopandas<1,>=0.11.1->openeo_processes_dask[implementations]) (1.9.4.post1)\n", - "Requirement already satisfied: pandas>=1.1.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from geopandas<1,>=0.11.1->openeo_processes_dask[implementations]) (2.0.3)\n", - "Requirement already satisfied: pyproj>=3.0.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from geopandas<1,>=0.11.1->openeo_processes_dask[implementations]) (3.6.0)\n", - "Requirement already satisfied: shapely>=1.7.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from geopandas<1,>=0.11.1->openeo_processes_dask[implementations]) (2.0.1)\n", - "Requirement already satisfied: affine in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from odc-geo<0.4.0,>=0.3.2->openeo_processes_dask[implementations]) (2.4.0)\n", - "Requirement already satisfied: cachetools in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from odc-geo<0.4.0,>=0.3.2->openeo_processes_dask[implementations]) (5.3.1)\n", - "Requirement already satisfied: geojson-pydantic<0.6.0,>=0.5.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo-pg-parser-networkx>=2023.5.1->openeo_processes_dask[implementations]) (0.5.0)\n", - "Requirement already satisfied: networkx<3.0.0,>=2.8.6 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo-pg-parser-networkx>=2023.5.1->openeo_processes_dask[implementations]) (2.8.8)\n", - "Requirement already satisfied: pendulum<3.0.0,>=2.1.2 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo-pg-parser-networkx>=2023.5.1->openeo_processes_dask[implementations]) (2.1.2)\n", - "Requirement already satisfied: pydantic<2.0.0,>=1.9.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from openeo-pg-parser-networkx>=2023.5.1->openeo_processes_dask[implementations]) (1.10.11)\n", - "Requirement already satisfied: pystac>=1.0.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from planetary_computer>=0.5.1->openeo_processes_dask[implementations]) (1.8.2)\n", - "Requirement already satisfied: pytz>=2020.5 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from planetary_computer>=0.5.1->openeo_processes_dask[implementations]) (2023.3)\n", - "Requirement already satisfied: requests>=2.25.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from planetary_computer>=0.5.1->openeo_processes_dask[implementations]) (2.31.0)\n", - "Requirement already satisfied: python-dotenv in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from planetary_computer>=0.5.1->openeo_processes_dask[implementations]) (1.0.0)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from pystac_client>=0.6.1->openeo_processes_dask[implementations]) (2.8.2)\n", - "Requirement already satisfied: attrs in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from rasterio<2.0.0,>=1.3.4->openeo_processes_dask[implementations]) (23.1.0)\n", - "Requirement already satisfied: certifi in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from rasterio<2.0.0,>=1.3.4->openeo_processes_dask[implementations]) (2023.5.7)\n", - "Requirement already satisfied: cligj>=0.5 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from rasterio<2.0.0,>=1.3.4->openeo_processes_dask[implementations]) (0.7.2)\n", - "Requirement already satisfied: snuggs>=1.4.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from rasterio<2.0.0,>=1.3.4->openeo_processes_dask[implementations]) (1.4.7)\n", - "Requirement already satisfied: click-plugins in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from rasterio<2.0.0,>=1.3.4->openeo_processes_dask[implementations]) (1.1.1)\n", - "Requirement already satisfied: setuptools in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from rasterio<2.0.0,>=1.3.4->openeo_processes_dask[implementations]) (68.0.0)\n", - "Requirement already satisfied: jsonschema>=3.2.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from stac_validator>=3.3.1->openeo_processes_dask[implementations]) (4.17.3)\n", - "Requirement already satisfied: types-setuptools in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from stac_validator>=3.3.1->openeo_processes_dask[implementations]) (68.0.0.1)\n", - "Requirement already satisfied: jinja2>=2.10.3 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from distributed>=2021.06.0->dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (3.1.2)\n", - "Requirement already satisfied: locket>=1.0.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from distributed>=2021.06.0->dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (1.0.0)\n", - "Requirement already satisfied: msgpack>=1.0.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from distributed>=2021.06.0->dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (1.0.5)\n", - "Requirement already satisfied: psutil>=5.7.2 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from distributed>=2021.06.0->dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (5.9.5)\n", - "Requirement already satisfied: sortedcontainers>=2.0.5 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from distributed>=2021.06.0->dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (2.4.0)\n", - "Requirement already satisfied: tblib>=1.6.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from distributed>=2021.06.0->dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (2.0.0)\n", - "Requirement already satisfied: tornado>=6.0.4 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from distributed>=2021.06.0->dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (6.3.2)\n", - "Requirement already satisfied: urllib3>=1.24.3 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from distributed>=2021.06.0->dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (2.0.3)\n", - "Requirement already satisfied: zict>=2.2.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from distributed>=2021.06.0->dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (3.0.0)\n", - "Requirement already satisfied: six in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from fiona>=1.8.19->geopandas<1,>=0.11.1->openeo_processes_dask[implementations]) (1.16.0)\n", - "Requirement already satisfied: zipp>=0.5 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from importlib-metadata>=4.13.0->dask[array]>=2022.11.1->openeo_processes_dask[implementations]) (3.16.1)\n", - "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from jsonschema>=3.2.0->stac_validator>=3.3.1->openeo_processes_dask[implementations]) (0.19.3)\n", - "Requirement already satisfied: tzdata>=2022.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from pandas>=1.1.0->geopandas<1,>=0.11.1->openeo_processes_dask[implementations]) (2023.3)\n", - "Requirement already satisfied: pytzdata>=2020.1 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from pendulum<3.0.0,>=2.1.2->openeo-pg-parser-networkx>=2023.5.1->openeo_processes_dask[implementations]) (2020.1)\n", - "Requirement already satisfied: typing-extensions>=4.2.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from pydantic<2.0.0,>=1.9.1->openeo-pg-parser-networkx>=2023.5.1->openeo_processes_dask[implementations]) (4.7.1)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from requests>=2.25.1->planetary_computer>=0.5.1->openeo_processes_dask[implementations]) (3.2.0)\n", - "Requirement already satisfied: idna<4,>=2.5 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from requests>=2.25.1->planetary_computer>=0.5.1->openeo_processes_dask[implementations]) (3.4)\n", - "Requirement already satisfied: pyparsing>=2.1.6 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from snuggs>=1.4.1->rasterio<2.0.0,>=1.3.4->openeo_processes_dask[implementations]) (3.1.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from jinja2>=2.10.3->distributed>=2021.06.0->dask-geopandas<1,>=0.2.0->openeo_processes_dask[implementations]) (2.1.3)\n", - "\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", - "Note: you may need to restart the kernel to use updated packages.\n", - "\u001b[33mWARNING: The directory '/home/gerald/.cache/pip' or its parent directory is not owned or is not writable by the current user. The cache has been disabled. Check the permissions and owner of that directory. If executing pip with sudo, you should use sudo's -H flag.\u001b[0m\u001b[33m\n", - "\u001b[0mRequirement already satisfied: netCDF4 in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (1.6.4)\n", - "Requirement already satisfied: cftime in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from netCDF4) (1.6.2)\n", - "Requirement already satisfied: certifi in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from netCDF4) (2023.5.7)\n", - "Requirement already satisfied: numpy in /home/gerald/.cache/pypoetry/virtualenvs/openeo-pg-parser-networkx-tLltH1mo-py3.10/lib/python3.10/site-packages (from netCDF4) (1.25.1)\n", - "\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], + "outputs": [], "source": [ "%pip install \"openeo_processes_dask[implementations]\"\n", "%pip install \"netCDF4\"" @@ -258,21 +145,11 @@ }, { "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "ename": "ImportError", - "evalue": "attempted relative import with no known parent package", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[19], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39minspect\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[39m#from openeo_pg_parser_networkx import ProcessRegistry\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39m.\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mopeneo_pg_parser_networkx\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mprocess_registry\u001b[39;00m \u001b[39mimport\u001b[39;00m ProcessRegistry\n\u001b[1;32m 5\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mopeneo_processes_dask\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mprocess_implementations\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mcore\u001b[39;00m \u001b[39mimport\u001b[39;00m process\n\u001b[1;32m 6\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mopeneo_pg_parser_networkx\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mprocess_registry\u001b[39;00m \u001b[39mimport\u001b[39;00m Process\n", - "\u001b[0;31mImportError\u001b[0m: attempted relative import with no known parent package" - ] - } - ], + "execution_count": 20, + "metadata": { + "tags": [] + }, + "outputs": [], "source": [ "import importlib\n", "import inspect\n", @@ -311,45 +188,497 @@ "\n", "def save_result(data, format = 'netcdf', options = None):\n", " # No generic implementation available, so need to implement locally!\n", - " pass\n", + " data.attrs = {}\n", + " data.to_netcdf(\"./data/result.nc\")\n", + " return True\n", "\n", "from openeo_processes_dask.specs import load_collection as load_collection_spec\n", "from openeo_processes_dask.specs import save_result as save_result_spec\n", "\n", "process_registry[\"load_collection\"] = Process(spec=load_collection_spec, implementation=load_collection)\n", - "process_registry[\"save_result\"] = Process(spec=save_result_spec, implementation=save_result)\n", - "\n" + "process_registry[\"save_result\"] = Process(spec=save_result_spec, implementation=save_result)" ] }, { "cell_type": "code", - "execution_count": 11, - "metadata": {}, + "execution_count": 21, + "metadata": { + "tags": [] + }, "outputs": [], "source": [ "pg_callable = parsed_graph.to_callable(process_registry=process_registry)" ] }, { - "cell_type": "code", - "execution_count": 14, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "pg_callable()" + "Run the workflow" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/mclaus@eurac.edu/openeo-processes-dask/openeo_processes_dask/process_implementations/math.py:90: RuntimeWarning: divide by zero encountered in divide\n", + " result = x / y\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pg_callable()" + ] + }, + { + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "Open the EVI result stored as a netCDF" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray (y: 27, x: 40)> Size: 9kB\n",
+       "[1080 values with dtype=float64]\n",
+       "Coordinates:\n",
+       "  * y            (y) float64 216B 1.608e+06 1.608e+06 ... 1.608e+06 1.608e+06\n",
+       "  * x            (x) float64 320B 5.249e+06 5.249e+06 ... 5.249e+06 5.249e+06\n",
+       "    spatial_ref  int32 4B ...
" + ], + "text/plain": [ + " Size: 9kB\n", + "[1080 values with dtype=float64]\n", + "Coordinates:\n", + " * y (y) float64 216B 1.608e+06 1.608e+06 ... 1.608e+06 1.608e+06\n", + " * x (x) float64 320B 5.249e+06 5.249e+06 ... 5.249e+06 5.249e+06\n", + " spatial_ref int32 4B ..." + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import xarray as xr\n", + "\n", + "ds_out = xr.open_dataarray(\"./data/result.nc\")\n", + "ds_out" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3.9.5 ('.venv': poetry)", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -363,9 +692,8 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.10.12" }, - "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "43bfd548961cb44d0ba5c288dd3238b5cc2de91951eb0a07084fe475948c38b4" @@ -373,5 +701,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 }