forked from jaymody/speculative-sampling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
158 lines (126 loc) · 4.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import functools
import sys
import time
import numpy as np
from tqdm import tqdm
sys.path.append("picoGPT")
from gpt2 import gpt2, softmax
from utils import load_encoder_hparams_and_params
def max_fn(x):
x_max = np.where(x > 0, x, 0)
return x_max / np.sum(x_max)
def sample(probs):
# NOTE: using greedy sampling here for simplicity since I don't implement top-p and
# without top-p sampling from the distribution gives bad results
return np.argmax(probs)
def autoregressive_sampling(x, model, N):
n = len(x)
T = len(x) + N
with tqdm(total=N, desc="autoregressive sampling") as pbar:
while n < T:
x = np.append(x, sample(model(x)[-1]))
n += 1
pbar.update(1)
return x
def speculative_sampling(x, draft_model, target_model, N, K):
# NOTE: paper indexes arrays starting from 1, python indexes from 0, so
# we have to add an extra -1 term when indexing using n, T, or t
n = len(x)
T = len(x) + N
with tqdm(total=N, desc="speculative sampling") as pbar:
while n < T:
# Step 1: auto-regressive decode K tokens from draft model and get final p
x_draft = x
for _ in range(K):
p = draft_model(x_draft)
x_draft = np.append(x_draft, sample(p[-1]))
# Step 2: target model forward passes on x_draft
q = target_model(x_draft)
# Step 3: append draft tokens based on rejection criterion and resample
# a token on rejection
all_accepted = True
for _ in range(K):
i = n - 1
j = x_draft[i + 1]
if np.random.random() < min(1, q[i][j] / p[i][j]): # accepted
x = np.append(x, j)
n += 1
else: # rejected
x = np.append(x, sample(max_fn(q[i] - p[i]))) # resample
n += 1
all_accepted = False
break
# Step 4: if all draft tokens were accepted, sample a final token
if all_accepted:
x = np.append(x, sample(q[-1]))
n += 1
# just keeping my sanity
pbar.update(n - pbar.n)
assert n == len(x), f"{n} {len(x)}"
return x
def create_model_fn(params, hparams):
f = functools.partial(gpt2, **params, n_head=hparams["n_head"])
g = lambda inputs: softmax(f(inputs))
# NOTE: if you want to implement top-p/top-k etc ..., you need to modify the
# probability distribution here instead of in the sample function, since in the
# paper they state the probabilities used in the rejection criteria should have
# top-p already applied (if using top-p)
return g
def main(
prompt: str = "Alan Turing theorized that computers would one day become",
n_tokens_to_generate: int = 40,
draft_model_size: str = "124M",
target_model_size: str = "1558M",
models_dir: str = "models",
K: int = 4,
seed: int = 123,
):
# seed numpy rng
np.random.seed(seed)
# load encoder, hparams, and params from the released open-ai gpt-2 files
encoder, draft_hparams, draft_params = load_encoder_hparams_and_params(
draft_model_size, models_dir
)
_, target_hparams, target_params = load_encoder_hparams_and_params(
target_model_size, models_dir
)
draft_model = create_model_fn(draft_params, draft_hparams)
target_model = create_model_fn(target_params, target_hparams)
# encode inputs
input_ids = encoder.encode(prompt)
def run_sampling_fn(decode_fn, input_ids, **kwargs):
start = time.perf_counter()
output_ids = decode_fn(x=input_ids, **kwargs)
text = encoder.decode(output_ids)
elapsed_time = time.perf_counter() - start
return text, elapsed_time
# autoregressive
autoregressive_text, autoregressive_time = run_sampling_fn(
autoregressive_sampling,
input_ids,
model=target_model,
N=n_tokens_to_generate,
)
# speculative
speculative_text, speculative_time = run_sampling_fn(
speculative_sampling,
input_ids,
target_model=target_model,
draft_model=draft_model,
N=n_tokens_to_generate,
K=K,
)
# print results
print()
print("Autoregressive Decode")
print("---------------------")
print(f"Time = {autoregressive_time:.2f}s")
print(f"Text = {autoregressive_text}")
print()
print("Speculative Decode")
print("------------------")
print(f"Time = {speculative_time:.2f}s")
print(f"Text = {speculative_text}")
if __name__ == "__main__":
import fire
fire.Fire(main)