python single_gpu_inference/benchmark_resnet_inference.py \
--batch-size ${batch_size} \
--image-size ${image_size} \
--precision ${precision} \
--checkpoint ${checkpoint} \
--datapath ${datapath} \
--enable-evaluation
Example to run ResNet for 1024 * 1024 image size woth INT8 quantization.
python single_gpu_inference/benchmark_resnet_inference.py \
--batch-size 1 \
--image-size 1024 \
--precision 'int8' \
--enable-evaluation
Below are the available configuration options :
optional arguments: -h, --help show this help message and exit -v, --verbose Prints performance numbers or logs (default: False) --batch-size BATCH_SIZE input batch size (default: 32) --image-size IMAGE_SIZE Image size for synthetic benchmark (default: 32) --num-classes NUM_CLASSES Number of classes (default: 10) --app APP Application type (1.medical, 2.cifar, and synthetic) in Spatial parallelism (default: 3) --datapath DATAPATH local Dataset path (default: ./train) --enable-evaluation Enable evaluation mode in GEMS to perform inference (default: False) --backend BACKEND Precision for evaluation [Note: not tested on training] (default: mpi) --precision PRECISION Precision for evaluation [Note: not tested on training] (default: fp32) --num-workers NUM_WORKERS Slice method (square, vertical, and horizontal) in Spatial parallelism (default: 0) --checkpoint CHECKPOINT Checkpoint path (default: None)