|
1 |
| - |
2 |
| -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
3 |
| -% Einführung |
4 |
| -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
5 |
| -\section{Einf"uhrung} |
6 |
| -\subsection{Zahlenmengen\formelbuchgreen{1,331}} |
7 |
| - \begin{minipage}[c]{6.5cm} |
8 |
| - $ \mathbb{N} = \left\{1,2,3,...\right\};\; $\\ |
9 |
| - $ \mathbb{Q} = \left\{x|x \;=\; ^{p}/_{q} \text{ mit } p \in \mathbb{Z} |
10 |
| - \text{ und } (q \in \mathbb{Z} \smallsetminus \{0\})\right\};\;$ |
11 |
| - \end{minipage} |
12 |
| - \begin{minipage}[c]{5cm} |
13 |
| - $ \mathbb{N}_0 = \left\{0,1,2,3,...\right\};\; $\\ |
14 |
| - \end{minipage} |
15 |
| - \begin{minipage}[c]{5cm} |
16 |
| - $ \mathbb{Z} = \left\{...,-2,-1,0,1,2,..\right\}; $\\ |
17 |
| - $ \mathbb{R} = zB \; \sqrt{2}, \pi,\phi$ |
18 |
| - \end{minipage} |
19 |
| - |
20 |
| -\subsection{Mengenlehre\formelbuchgreen{334}} |
21 |
| - $A \;=\; \left\{-2,-1,0,1,2\right\} ,\; B\; =\; \left\{0,1,2,3,4\right\}$\\ |
22 |
| - \begin{minipage}[c]{6.5cm} |
23 |
| - Schnittmenge:\\ |
24 |
| - Vereinigungsmenge:\\ |
25 |
| - Differenzmenge:\\ |
26 |
| - Produktmenge:\\ |
27 |
| - Kommutativgesetz:\\ |
28 |
| - Assoziativgesetz:\\ |
29 |
| - Distributivgesetz: |
30 |
| - \end{minipage} |
31 |
| - \begin{minipage}[c]{6.5cm} |
32 |
| - $A \; \cap B \;=\;\left\{x|x \in A \text{ und } x \in B \right\}$\\ |
33 |
| - $A \; \cup B \;=\;\left\{x|x \in A \text{ oder } x \in B \right\}$\\ |
34 |
| - $A \; \smallsetminus B \;=\;\left\{x|x \in A \text{ und } x \notin B \right\}$\\ |
35 |
| - $A \; \times B\;=\;\left\{(a,b)|a \in A \text{ und } b \in B \right\}$\\ |
36 |
| - $A \; \cap B \;=\;B \; \cap A$ \\ |
37 |
| - $\left(A \cap B \right) \cap C\;=\;A \cap \left( B \cap C \right)$ \\ |
38 |
| - $A\; \cap \left(B\cup C\right)\;=\;\left(A \cup B\right)\cap \left(A \cup C\right) $ |
39 |
| - \end{minipage} |
40 |
| - \begin{minipage}[c]{7cm} |
41 |
| - $A \; \cap B \;=\; \left\{0,1,2\right\}$\\ |
42 |
| - $A \; \cup B \;=\;\left\{-2,-1,0,1,2\right\}$\\ |
43 |
| - $A \; \smallsetminus B \;=\;\left\{-2,-1\right\}$\\ |
44 |
| - $ $\\ |
45 |
| - $A \; \cup B \;=\;B \; \cup A$ \\ |
46 |
| - $\left(A \cup B\right) \cup C\;=\;A \cup \left( B \cup C \right)$ \\ |
47 |
| - $A\; \cup \left( B \cap C \right)\;=\;\left( A \cap B \right) \cup \left(A \cap C\right) $ |
48 |
| - \end{minipage} |
49 |
| - |
50 |
| -\subsection{Beweismethoden\formelbuchgreen{5}} |
51 |
| - |
52 |
| -\subsection{Spezielle Ungleichungen\formelbuchgreen{30}} |
53 |
| - \begin{tabbing} xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\=xxxxxxxxxxxxxxxxxxxxxx\=xxxxxxxxxxxxxxxxxxxxxx\=xxxxxxxxxxxxxxxxxxxxxx\=\kill |
54 |
| - Bernoulli-Ungleichung: \> |
55 |
| - $(1 + a)^n > 1 + n \cdot a$\> |
56 |
| - f"ur $n \in N, n \geq 2, a \in R, a > -1, a\neq0$\\ |
57 |
| - Binomische Ungleichung: \> |
58 |
| - $|a\cdot b|\leq\frac{1}{2}(a^2 + b^2)$\\ |
59 |
| - Dreiecksungleichung: \> |
60 |
| - $\left|a+b\right|\leq\left|a\right|+\left|b\right|$ \> |
61 |
| - $\left|a-b\right|\leq\left|a\right|+\left|b\right|$ \> |
62 |
| - $\left|a-b\right|\geq\left|\left|a\right|-\left|b\right|\right|$\\ |
63 |
| - Geometrisches und arithmetisches Mittel:\\ |
64 |
| - f"ur $a_i\geq0,\;n \in \mathbb{N},\;i \in \left\{1,2,...,n \right\}:$\> |
65 |
| - $\sqrt[n]{a_1 a_2 \ldots a_n}\leq \frac{1}{n} \cdot \sum\limits _{i=1}^n a_i = \frac{a_1+a_2+...+a_n}{n}$\>\> |
66 |
| - $\sqrt{ab}\leq \frac{a+b}{2}$, siehe Br. S.19/20 \\ |
67 |
| - Minima/Maxima: \> |
68 |
| - $\min\{a_i\} \leq \sqrt[n]{a_1a_2 \ldots a_n} \leq \max\{a_i\}$\\ |
69 |
| - Betragsungleichung:\>$-c<x<c\;\Leftrightarrow\;|x|<c$ |
70 |
| - \end{tabbing} |
71 |
| - |
72 |
| -\subsection{Umgebung} |
73 |
| - \begin{minipage}[c]{14.5cm} |
74 |
| - Jedes offene Intervall, dass die Zahl a enth"alt, heisst eine Umgebung von a. \\ |
75 |
| - Es sei $\epsilon >$ 0. Unter der $\epsilon$-Umgebung von a versteht man das offene Intervall $(a-\epsilon,a+\epsilon).$\\ |
76 |
| - Eine $\epsilon$-Umgebung von a ohne die Zahl a selbst wird punktierte $\epsilon$-Umgebung von a genannt. |
77 |
| - \end{minipage} |
78 |
| - \begin{minipage}[c]{5cm} |
79 |
| - Schreibweise: U(a)\\ |
80 |
| - Schreibweise: $U_\epsilon(a)$\\ |
81 |
| - Schreibweise: $\dot{U}_\epsilon(a)=U_\epsilon(a)\smallsetminus{a}$ |
82 |
| - \end{minipage} |
83 |
| - |
84 |
| -\subsection{Summenzeichen\formelbuchgreen{7}} |
85 |
| - \begin{minipage}[c]{4.75cm} |
86 |
| - $\text{mit 1}\leq m\leq n $ |
87 |
| - \end{minipage} |
88 |
| - \begin{minipage}[c]{16cm} |
89 |
| - Die Laufvariable $i$ wird immer um 1 aufaddiert. $i$ immer kleiner-gleich $n$ (z.B. wenn $i \in \mathbb{R}$) |
90 |
| - \end{minipage} |
91 |
| - \begin{minipage}[c]{4.75cm} |
92 |
| - $\sum\limits _{i=1}^n a_i = \sum\limits _{i=1}^m a_i + \sum\limits _{i=m+1}^n a_i;$ |
93 |
| - \end{minipage} |
94 |
| - \begin{minipage}[c]{4.25cm} |
95 |
| - $\sum\limits _{i=1}^n a_i = \sum\limits _{i=1-j}^{n-j} a_{i+j};$ |
96 |
| - \end{minipage} |
97 |
| - \begin{minipage}[c]{4.25cm} |
98 |
| - $\sum\limits _{i=1}^n a = n\cdot a;$ |
99 |
| - \end{minipage} |
100 |
| - \begin{minipage}[c]{8cm} |
101 |
| - $\sum\limits _{i=1}^n \left(\lambda a_i + \beta b_i \right) = $ |
102 |
| - $\lambda \sum\limits _{i=1}^n a_i + \beta \sum\limits _{i=1}^n b_i$ |
103 |
| - \end{minipage} |
104 |
| - |
105 |
| -\subsection{Spezielle endliche Reihen\formelbuchgreen{19}} |
106 |
| - \begin{minipage}[c]{4.25cm} |
107 |
| - $\sum\limits _{i=1}^n i = \frac{n(n+1)}{2}$ |
108 |
| - \end{minipage} |
109 |
| - \begin{minipage}[c]{4.25cm} |
110 |
| - $\sum\limits _{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$ |
111 |
| - \end{minipage} |
112 |
| - \begin{minipage}[c]{4.25cm} |
113 |
| - $\sum\limits _{i=1}^n i^3 = \frac{n^2(n+1)^2}{4}$ |
114 |
| - \end{minipage} |
115 |
| - |
116 |
| -\subsection{Produktzeichen\formelbuchgreen{7}} |
117 |
| - $a_n\prod\limits _{i=1}^n \left(x-x_i\right)= |
118 |
| - a_n\cdot\left(x-x_1\right)\cdot\left(x-x_2\right)\cdot...\cdot\left(x-x_n\right)$ |
119 |
| - |
120 |
| -\subsection{Fakult"at\formelbuchgreen{13}} |
121 |
| - \begin{minipage}[c]{6cm} |
122 |
| - $n! = 1\cdot2\cdot3\cdot...\cdot n $ |
123 |
| - \end{minipage} |
124 |
| - \begin{minipage}[c]{6cm} |
125 |
| - $\text{f"ur n} \in \mathbb{N}, n \geq 3$ |
126 |
| - \end{minipage} |
127 |
| - \begin{minipage}[c]{6cm} |
128 |
| - $n!>2^{n-1}$ |
129 |
| - \end{minipage} |
130 |
| - |
131 |
| -\subsection{Binomischer Satz\formelbuchgreen{12}} |
132 |
| - \begin{minipage}[c]{6cm} |
133 |
| - $\left(a+b\right)^n = \sum\limits _{i=0}^n \left(\stackrel{n}{i}\right)a^{n-i}\cdot b^i$;\\ |
134 |
| - $\left(\stackrel{n}{i-1}\right)+\left(\stackrel{n}{i}\right)=\left(\stackrel{n+1}{i}\right)$; |
135 |
| - \end{minipage} |
136 |
| - \begin{minipage}[c]{6cm} |
137 |
| - $\left(\stackrel{n}{i}\right)=\left(\stackrel{n}{n-i}\right)$\\ |
138 |
| - $\left(\stackrel{n}{i}\right)=\frac{n!}{i!\left(n-i\right)!}$; |
139 |
| - \end{minipage} |
140 |
| - \begin{minipage}[c]{6cm} |
141 |
| - $\left(\stackrel{n}{0}\right)=1$ |
142 |
| - \end{minipage} |
143 |
| - |
144 |
| -\subsection{Einige Wurzeln} |
| 1 | + |
| 2 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 3 | +% Einführung |
| 4 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 5 | +\section{Einf"uhrung} |
| 6 | +\subsection{Zahlenmengen\formelbuchgreen{1,331}} |
| 7 | + \begin{minipage}[c]{6.5cm} |
| 8 | + $ \mathbb{N} = \left\{1,2,3,...\right\};\; $\\ |
| 9 | + $ \mathbb{Q} = \left\{x|x \;=\; ^{p}/_{q} \text{ mit } p \in \mathbb{Z} |
| 10 | + \text{ und } (q \in \mathbb{Z} \smallsetminus \{0\})\right\};\;$ |
| 11 | + \end{minipage} |
| 12 | + \begin{minipage}[c]{5cm} |
| 13 | + $ \mathbb{N}_0 = \left\{0,1,2,3,...\right\};\; $\\ |
| 14 | + \end{minipage} |
| 15 | + \begin{minipage}[c]{5cm} |
| 16 | + $ \mathbb{Z} = \left\{...,-2,-1,0,1,2,..\right\}; $\\ |
| 17 | + $ \mathbb{R} = zB \; \sqrt{2}, \pi,\phi$ |
| 18 | + \end{minipage} |
| 19 | + |
| 20 | +\subsection{Mengenlehre\formelbuchgreen{334}} |
| 21 | + $A \;=\; \left\{-2,-1,0,1,2\right\} ,\; B\; =\; \left\{0,1,2,3,4\right\}$\\ |
| 22 | + \begin{minipage}[c]{6.5cm} |
| 23 | + Schnittmenge:\\ |
| 24 | + Vereinigungsmenge:\\ |
| 25 | + Differenzmenge:\\ |
| 26 | + Produktmenge:\\ |
| 27 | + Kommutativgesetz:\\ |
| 28 | + Assoziativgesetz:\\ |
| 29 | + Distributivgesetz: |
| 30 | + \end{minipage} |
| 31 | + \begin{minipage}[c]{6.5cm} |
| 32 | + $A \; \cap B \;=\;\left\{x|x \in A \text{ und } x \in B \right\}$\\ |
| 33 | + $A \; \cup B \;=\;\left\{x|x \in A \text{ oder } x \in B \right\}$\\ |
| 34 | + $A \; \smallsetminus B \;=\;\left\{x|x \in A \text{ und } x \notin B \right\}$\\ |
| 35 | + $A \; \times B\;=\;\left\{(a,b)|a \in A \text{ und } b \in B \right\}$\\ |
| 36 | + $A \; \cap B \;=\;B \; \cap A$ \\ |
| 37 | + $\left(A \cap B \right) \cap C\;=\;A \cap \left( B \cap C \right)$ \\ |
| 38 | + $A\; \cap \left(B\cup C\right)\;=\;\left(A \cup B\right)\cap \left(A \cup C\right) $ |
| 39 | + \end{minipage} |
| 40 | + \begin{minipage}[c]{7cm} |
| 41 | + $A \; \cap B \;=\; \left\{0,1,2\right\}$\\ |
| 42 | + $A \; \cup B \;=\;\left\{-2,-1,0,1,2\right\}$\\ |
| 43 | + $A \; \smallsetminus B \;=\;\left\{-2,-1\right\}$\\ |
| 44 | + $ $\\ |
| 45 | + $A \; \cup B \;=\;B \; \cup A$ \\ |
| 46 | + $\left(A \cup B\right) \cup C\;=\;A \cup \left( B \cup C \right)$ \\ |
| 47 | + $A\; \cup \left( B \cap C \right)\;=\;\left( A \cap B \right) \cup \left(A \cap C\right) $ |
| 48 | + \end{minipage} |
| 49 | + |
| 50 | +\subsection{Beweismethoden\formelbuchgreen{5}} |
| 51 | + |
| 52 | +\subsection{Spezielle Ungleichungen\formelbuchgreen{30}} |
| 53 | + \begin{tabbing} xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\=xxxxxxxxxxxxxxxxxxxxxx\=xxxxxxxxxxxxxxxxxxxxxx\=xxxxxxxxxxxxxxxxxxxxxx\=\kill |
| 54 | + Bernoulli-Ungleichung: \> |
| 55 | + $(1 + a)^n > 1 + n \cdot a$\> |
| 56 | + f"ur $n \in N, n \geq 2, a \in R, a > -1, a\neq0$\\ |
| 57 | + Binomische Ungleichung: \> |
| 58 | + $|a\cdot b|\leq\frac{1}{2}(a^2 + b^2)$\\ |
| 59 | + Dreiecksungleichung: \> |
| 60 | + $\left|a+b\right|\leq\left|a\right|+\left|b\right|$ \> |
| 61 | + $\left|a-b\right|\leq\left|a\right|+\left|b\right|$ \> |
| 62 | + $\left|a-b\right|\geq\left|\left|a\right|-\left|b\right|\right|$\\ |
| 63 | + Geometrisches und arithmetisches Mittel:\\ |
| 64 | + f"ur $a_i\geq0,\;n \in \mathbb{N},\;i \in \left\{1,2,...,n \right\}:$\> |
| 65 | + $\sqrt[n]{a_1 a_2 \ldots a_n}\leq \frac{1}{n} \cdot \sum\limits _{i=1}^n a_i = \frac{a_1+a_2+...+a_n}{n}$\>\> |
| 66 | + $\sqrt{ab}\leq \frac{a+b}{2}$, siehe Br. S.19/20 \\ |
| 67 | + Minima/Maxima: \> |
| 68 | + $\min\{a_i\} \leq \sqrt[n]{a_1a_2 \ldots a_n} \leq \max\{a_i\}$\\ |
| 69 | + Betragsungleichung:\>$-c<x<c\;\Leftrightarrow\;|x|<c$ |
| 70 | + \end{tabbing} |
| 71 | + |
| 72 | +\subsection{Umgebung} |
| 73 | + \begin{minipage}[c]{14.5cm} |
| 74 | + Jedes offene Intervall, dass die Zahl a enth"alt, heisst eine Umgebung von a. \\ |
| 75 | + Es sei $\epsilon >$ 0. Unter der $\epsilon$-Umgebung von a versteht man das offene Intervall $(a-\epsilon,a+\epsilon).$\\ |
| 76 | + Eine $\epsilon$-Umgebung von a ohne die Zahl a selbst wird punktierte $\epsilon$-Umgebung von a genannt. |
| 77 | + \end{minipage} |
| 78 | + \begin{minipage}[c]{5cm} |
| 79 | + Schreibweise: U(a)\\ |
| 80 | + Schreibweise: $U_\epsilon(a)$\\ |
| 81 | + Schreibweise: $\dot{U}_\epsilon(a)=U_\epsilon(a)\smallsetminus{a}$ |
| 82 | + \end{minipage} |
| 83 | + |
| 84 | +\subsection{Summenzeichen\formelbuchgreen{7}} |
| 85 | + \begin{minipage}[c]{4.75cm} |
| 86 | + $\text{mit 1}\leq m\leq n $ |
| 87 | + \end{minipage} |
| 88 | + \begin{minipage}[c]{16cm} |
| 89 | + Die Laufvariable $i$ wird immer um 1 aufaddiert. $i$ immer kleiner-gleich $n$ (z.B. wenn $i \in \mathbb{R}$) |
| 90 | + \end{minipage} |
| 91 | + \begin{minipage}[c]{4.75cm} |
| 92 | + $\sum\limits _{i=1}^n a_i = \sum\limits _{i=1}^m a_i + \sum\limits _{i=m+1}^n a_i;$ |
| 93 | + \end{minipage} |
| 94 | + \begin{minipage}[c]{4.25cm} |
| 95 | + $\sum\limits _{i=1}^n a_i = \sum\limits _{i=1-j}^{n-j} a_{i+j};$ |
| 96 | + \end{minipage} |
| 97 | + \begin{minipage}[c]{4.25cm} |
| 98 | + $\sum\limits _{i=1}^n a = n\cdot a;$ |
| 99 | + \end{minipage} |
| 100 | + \begin{minipage}[c]{8cm} |
| 101 | + $\sum\limits _{i=1}^n \left(\lambda a_i + \beta b_i \right) = $ |
| 102 | + $\lambda \sum\limits _{i=1}^n a_i + \beta \sum\limits _{i=1}^n b_i$ |
| 103 | + \end{minipage} |
| 104 | + |
| 105 | +\subsection{Spezielle endliche Reihen\formelbuchgreen{19}} |
| 106 | + \begin{minipage}[c]{4.25cm} |
| 107 | + $\sum\limits _{i=1}^n i = \frac{n(n+1)}{2}$ |
| 108 | + \end{minipage} |
| 109 | + \begin{minipage}[c]{4.25cm} |
| 110 | + $\sum\limits _{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$ |
| 111 | + \end{minipage} |
| 112 | + \begin{minipage}[c]{4.25cm} |
| 113 | + $\sum\limits _{i=1}^n i^3 = \frac{n^2(n+1)^2}{4}$ |
| 114 | + \end{minipage} |
| 115 | + |
| 116 | +\subsection{Produktzeichen\formelbuchgreen{7}} |
| 117 | + $a_n\prod\limits _{i=1}^n \left(x-x_i\right)= |
| 118 | + a_n\cdot\left(x-x_1\right)\cdot\left(x-x_2\right)\cdot...\cdot\left(x-x_n\right)$ |
| 119 | + |
| 120 | +\subsection{Fakult"at\formelbuchgreen{13}} |
| 121 | + \begin{minipage}[c]{6cm} |
| 122 | + $n! = 1\cdot2\cdot3\cdot...\cdot n $ |
| 123 | + \end{minipage} |
| 124 | + \begin{minipage}[c]{6cm} |
| 125 | + $\text{f"ur n} \in \mathbb{N}, n \geq 3$ |
| 126 | + \end{minipage} |
| 127 | + \begin{minipage}[c]{6cm} |
| 128 | + $n!>2^{n-1}$ |
| 129 | + \end{minipage} |
| 130 | + |
| 131 | +\subsection{Binomischer Satz\formelbuchgreen{12}} |
| 132 | + \begin{minipage}[c]{6cm} |
| 133 | + $\left(a+b\right)^n = \sum\limits _{i=0}^n \left(\stackrel{n}{i}\right)a^{n-i}\cdot b^i$\\ |
| 134 | + $\left(\stackrel{n}{i-1}\right)+\left(\stackrel{n}{i}\right)=\left(\stackrel{n+1}{i}\right)$ |
| 135 | + \end{minipage} |
| 136 | + \begin{minipage}[c]{6cm} |
| 137 | + $\left(\stackrel{n}{i}\right)=\left(\stackrel{n}{n-i}\right)$\\ |
| 138 | + $\left(\stackrel{n}{i}\right)=\frac{n!}{i!\left(n-i\right)!}$ |
| 139 | + \end{minipage} |
| 140 | + \begin{minipage}[c]{6cm} |
| 141 | + $\left(\stackrel{n}{0}\right)=1$\\ |
| 142 | + $2^n = \sum\limits _{i=0}^n \left(\stackrel{n}{i}\right)$ |
| 143 | + \end{minipage} |
| 144 | + |
| 145 | +\subsection{Einige Wurzeln} |
145 | 146 | $\sqrt{2} = 1.414; \qquad \sqrt{3} = 1.732; \qquad \sqrt{5} = 2.236; \qquad \sqrt{6} = 2.449; \qquad \sqrt{7} = 2.645; \qquad \sqrt{8} = 2.828;$
|
0 commit comments