The dataset is preprocessed. The annotation file and the videos can be downloaded from here. Once the data are downloaded, follow some pre-processing of the videos and organize the filesystem like this.
${ROOT}
|--data
| |--images/
| |--annotations.npy
|--dataset
|...
First, install necessary packages via virtualenv
by running:
// create the virtual environment
$ virtualenv venv
// activate the virtual environment
$ source venv/bin/activate
// install required packages
(venv) $ pip3 install -r requirements.txt
Then, run the training code:
// for SO(3) supervision
(venv) $ python3 train_roofing.py --config experiments/roofing/l2/<config>.yaml
// OR for direct supervision
(venv) $ python3 train_roofing_direct.py --config experiments/roofing/l2/<config>.yaml
Multi-GPUs can be run by commenting out the line model = nn.DataParallel(model)
in the main()
method.
To evaluate the results, run:
(venv) $ python3 evaluate_roofing.py --record logs/<path-to-result-file>.pkl