Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Question about Search results and Retrain results #83

Open
Sunshine-Ye opened this issue Nov 28, 2019 · 3 comments
Open

Question about Search results and Retrain results #83

Sunshine-Ye opened this issue Nov 28, 2019 · 3 comments

Comments

@Sunshine-Ye
Copy link

Sunshine-Ye commented Nov 28, 2019

Dear author:
thanks for your effort! But i am confused about the results i get:

1.About Search results, i can only achieve 0.3346% after 40 epochs of searching, i try the search experiments twice and get similar results. The config_utils.search_args i used is default (except add dist=False), i dont know if there are some difference between the config_utils.search_args and that you used to get a 37% search results.

2.About Retrain results, i test the pre-retrained model of Autodeeplab-M you provided, but i can only get 72.38 mIoU with eval_scales=(0.25,0.5,0.75,1,1.25,1.5) and 76.66 mIoU with eval_scales=(1.0,). The config_utils.evaluate_args is incomplete, and i use following evaluate_args to match the pre-retrained model.

def obtain_evaluate_args():
parser = argparse.ArgumentParser(description='---------------------evaluate args---------------------')
parser.add_argument('--train', action='store_true', default=False, help='training mode')
parser.add_argument('--exp', type=str, default='bnlr7e-3', help='name of experiment')
parser.add_argument('--gpu', type=int, default=0, help='test time gpu device id')
parser.add_argument('--backbone', type=str, default='autodeeplab', help='resnet101')
parser.add_argument('--dataset', type=str, default='cityscapes', help='pascal or cityscapes')
parser.add_argument('--groups', type=int, default=None, help='num of groups for group normalization')
parser.add_argument('--epochs', type=int, default=30, help='num of training epochs')
parser.add_argument('--batch_size', type=int, default=10, help='batch size')
parser.add_argument('--base_lr', type=float, default=0.00025, help='base learning rate')
parser.add_argument('--last_mult', type=float, default=1.0, help='learning rate multiplier for last layers')
parser.add_argument('--scratch', action='store_true', default=False, help='train from scratch')
parser.add_argument('--freeze_bn', action='store_true', default=False, help='freeze batch normalization parameters')
parser.add_argument('--weight_std', action='store_true', default=False, help='weight standardization')
parser.add_argument('--beta', action='store_true', default=False, help='resnet101 beta')
parser.add_argument('--crop_size', type=int, default=513, help='image crop size')
parser.add_argument('--resume', type=str, default=None, help='path to checkpoint to resume from')
parser.add_argument('--workers', type=int, default=4, help='number of data loading workers')
parser.add_argument('--use_ABN', type=bool, default=False, help='whether use ABN') # False
parser.add_argument('--affine', default=True, type=bool, help='whether use affine in BN') # True
parser.add_argument('--dist', type=bool, default=False, help='whether to use Distribued Sampler (default: False)')
parser.add_argument('--network_arch', type=str, default=None, help='searched net_arch')
parser.add_argument('--cell_arch', type=str, default=None, help='searched cell_arch')
parser.add_argument('--num_classes', type=int, default=19)
parser.add_argument('--filter_multiplier', type=int, default=32) # 8
parser.add_argument('--block_multiplier', type=int, default=5)
parser.add_argument('--initial_fm', type=int, default=None) # 512
parser.add_argument('--eval_scales', default=(1.0,),
type=bool, help='whether use eval_scales') # (1.0,) (0.25,0.5,0.75,1,1.25,1.5)
args = parser.parse_args()
return args

  1. some bugs (personal opinions).
    new_model.get_default_cell: cell[2] = [3, 6], cell[3] = [2, 4], cell[9] = [17, 5]
    new_model.get_default_arch: backbone = [0, 0, 0, 1, 2, 1, 2, 2, 3, 3, 2, 1]

Looking forward to your reply!

@MJITG
Copy link

MJITG commented Nov 28, 2019

Same. We only got 0.308 mIoU at epoch 33

@cardwing
Copy link

@Sunshine-Ye Thanks for your sharing. I wonder what is the performance of your searched architecture instead of the provided model? Thanks a lot.

@zhangximing666
Copy link

@Sunshine-Ye Thanks for sharing. I am also curious about the result of this model. Could you share the pre-retrained model author provided? The link in the original repository is broken. I reimplemented it in mindspore and trained the model of Autodeeplab-M but only got 77.62% miou.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants