You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Dear author:
thanks for your effort! But i am confused about the results i get:
1.About Search results, i can only achieve 0.3346% after 40 epochs of searching, i try the search experiments twice and get similar results. The config_utils.search_args i used is default (except add dist=False), i dont know if there are some difference between the config_utils.search_args and that you used to get a 37% search results.
2.About Retrain results, i test the pre-retrained model of Autodeeplab-M you provided, but i can only get 72.38 mIoU with eval_scales=(0.25,0.5,0.75,1,1.25,1.5) and 76.66 mIoU with eval_scales=(1.0,). The config_utils.evaluate_args is incomplete, and i use following evaluate_args to match the pre-retrained model.
def obtain_evaluate_args():
parser = argparse.ArgumentParser(description='---------------------evaluate args---------------------')
parser.add_argument('--train', action='store_true', default=False, help='training mode')
parser.add_argument('--exp', type=str, default='bnlr7e-3', help='name of experiment')
parser.add_argument('--gpu', type=int, default=0, help='test time gpu device id')
parser.add_argument('--backbone', type=str, default='autodeeplab', help='resnet101')
parser.add_argument('--dataset', type=str, default='cityscapes', help='pascal or cityscapes')
parser.add_argument('--groups', type=int, default=None, help='num of groups for group normalization')
parser.add_argument('--epochs', type=int, default=30, help='num of training epochs')
parser.add_argument('--batch_size', type=int, default=10, help='batch size')
parser.add_argument('--base_lr', type=float, default=0.00025, help='base learning rate')
parser.add_argument('--last_mult', type=float, default=1.0, help='learning rate multiplier for last layers')
parser.add_argument('--scratch', action='store_true', default=False, help='train from scratch')
parser.add_argument('--freeze_bn', action='store_true', default=False, help='freeze batch normalization parameters')
parser.add_argument('--weight_std', action='store_true', default=False, help='weight standardization')
parser.add_argument('--beta', action='store_true', default=False, help='resnet101 beta')
parser.add_argument('--crop_size', type=int, default=513, help='image crop size')
parser.add_argument('--resume', type=str, default=None, help='path to checkpoint to resume from')
parser.add_argument('--workers', type=int, default=4, help='number of data loading workers')
parser.add_argument('--use_ABN', type=bool, default=False, help='whether use ABN') # False
parser.add_argument('--affine', default=True, type=bool, help='whether use affine in BN') # True
parser.add_argument('--dist', type=bool, default=False, help='whether to use Distribued Sampler (default: False)')
parser.add_argument('--network_arch', type=str, default=None, help='searched net_arch')
parser.add_argument('--cell_arch', type=str, default=None, help='searched cell_arch')
parser.add_argument('--num_classes', type=int, default=19)
parser.add_argument('--filter_multiplier', type=int, default=32) # 8
parser.add_argument('--block_multiplier', type=int, default=5)
parser.add_argument('--initial_fm', type=int, default=None) # 512
parser.add_argument('--eval_scales', default=(1.0,),
type=bool, help='whether use eval_scales') # (1.0,) (0.25,0.5,0.75,1,1.25,1.5)
args = parser.parse_args()
return args
@Sunshine-Ye Thanks for sharing. I am also curious about the result of this model. Could you share the pre-retrained model author provided? The link in the original repository is broken. I reimplemented it in mindspore and trained the model of Autodeeplab-M but only got 77.62% miou.
Dear author:
thanks for your effort! But i am confused about the results i get:
1.About Search results, i can only achieve 0.3346% after 40 epochs of searching, i try the search experiments twice and get similar results. The config_utils.search_args i used is default (except add dist=False), i dont know if there are some difference between the config_utils.search_args and that you used to get a 37% search results.
2.About Retrain results, i test the pre-retrained model of Autodeeplab-M you provided, but i can only get 72.38 mIoU with eval_scales=(0.25,0.5,0.75,1,1.25,1.5) and 76.66 mIoU with eval_scales=(1.0,). The config_utils.evaluate_args is incomplete, and i use following evaluate_args to match the pre-retrained model.
def obtain_evaluate_args():
parser = argparse.ArgumentParser(description='---------------------evaluate args---------------------')
parser.add_argument('--train', action='store_true', default=False, help='training mode')
parser.add_argument('--exp', type=str, default='bnlr7e-3', help='name of experiment')
parser.add_argument('--gpu', type=int, default=0, help='test time gpu device id')
parser.add_argument('--backbone', type=str, default='autodeeplab', help='resnet101')
parser.add_argument('--dataset', type=str, default='cityscapes', help='pascal or cityscapes')
parser.add_argument('--groups', type=int, default=None, help='num of groups for group normalization')
parser.add_argument('--epochs', type=int, default=30, help='num of training epochs')
parser.add_argument('--batch_size', type=int, default=10, help='batch size')
parser.add_argument('--base_lr', type=float, default=0.00025, help='base learning rate')
parser.add_argument('--last_mult', type=float, default=1.0, help='learning rate multiplier for last layers')
parser.add_argument('--scratch', action='store_true', default=False, help='train from scratch')
parser.add_argument('--freeze_bn', action='store_true', default=False, help='freeze batch normalization parameters')
parser.add_argument('--weight_std', action='store_true', default=False, help='weight standardization')
parser.add_argument('--beta', action='store_true', default=False, help='resnet101 beta')
parser.add_argument('--crop_size', type=int, default=513, help='image crop size')
parser.add_argument('--resume', type=str, default=None, help='path to checkpoint to resume from')
parser.add_argument('--workers', type=int, default=4, help='number of data loading workers')
parser.add_argument('--use_ABN', type=bool, default=False, help='whether use ABN') # False
parser.add_argument('--affine', default=True, type=bool, help='whether use affine in BN') # True
parser.add_argument('--dist', type=bool, default=False, help='whether to use Distribued Sampler (default: False)')
parser.add_argument('--network_arch', type=str, default=None, help='searched net_arch')
parser.add_argument('--cell_arch', type=str, default=None, help='searched cell_arch')
parser.add_argument('--num_classes', type=int, default=19)
parser.add_argument('--filter_multiplier', type=int, default=32) # 8
parser.add_argument('--block_multiplier', type=int, default=5)
parser.add_argument('--initial_fm', type=int, default=None) # 512
parser.add_argument('--eval_scales', default=(1.0,),
type=bool, help='whether use eval_scales') # (1.0,) (0.25,0.5,0.75,1,1.25,1.5)
args = parser.parse_args()
return args
new_model.get_default_cell: cell[2] = [3, 6], cell[3] = [2, 4], cell[9] = [17, 5]
new_model.get_default_arch: backbone = [0, 0, 0, 1, 2, 1, 2, 2, 3, 3, 2, 1]
Looking forward to your reply!
The text was updated successfully, but these errors were encountered: