-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
57 lines (48 loc) · 1.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import random
import tensorflow as tf
import numpy as np
# from dqn.agent import Agent
from dqn.environment import GymEnvironment, SimpleGymEnvironment
from config import get_config
import argparse
def set_random_seed(seed):
tf.set_random_seed(seed)
random.seed(seed)
np.random.seed(seed)
def main(_):
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--seed', help='RNG seed', type=int, default=123)
parser.add_argument('--test', action="store_true")
parser.add_argument("--use-gpu", action="store_true")
parser.add_argument("--mode", help="Bonus mode", default="pixelcnn")
args = parser.parse_args()
config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
config.gpu_options.allow_growth=True
with tf.Session(config=config) as sess:
config = get_config(args)
if config.env_type == 'simple':
env = SimpleGymEnvironment(config)
else:
env = GymEnvironment(config)
if not tf.test.is_gpu_available() and args.use_gpu:
raise Exception("use_gpu flag is true when no GPUs are available")
if args.mode == "pixelcnn":
from dqn.agent import Agent
agent = Agent(config, env, sess)
elif args.mode == "autoencoder":
from dqn.agent_model import Agent
agent = Agent(config, env, sess)
elif args.mode == "top-pixelcnn":
from dqn.agent_top import Agent
agent = Agent(config, env, sess)
else:
raise ValueError("No such mode")
print("CNN format", config.cnn_format)
if not args.test:
print("training ...")
agent.train()
else:
print("testing ...")
agent.play()
if __name__ == '__main__':
tf.app.run()