forked from deepfindr/xai-series
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_interpretable_models.py
68 lines (56 loc) · 2.13 KB
/
01_interpretable_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# %% Imports
from utils import DataLoader
from interpret.glassbox import (LogisticRegression,
ClassificationTree,
ExplainableBoostingClassifier)
from interpret import show
from sklearn.metrics import f1_score, accuracy_score
# %% Load and preprocess data
data_loader = DataLoader()
data_loader.load_dataset()
data_loader.preprocess_data()
# Split the data for evaluation
X_train, X_test, y_train, y_test = data_loader.get_data_split()
print(X_train.shape)
print(X_test.shape)
# Oversample the train data
X_train, y_train = data_loader.oversample(X_train, y_train)
print("After oversampling:", X_train.shape)
# %% Fit logistic regression model
lr = LogisticRegression(random_state=2021, feature_names=X_train.columns, penalty='l1', solver='liblinear')
lr.fit(X_train, y_train)
print("Training finished.")
# %% Evaluate logistic regression model
y_pred = lr.predict(X_test)
print(f"F1 Score {f1_score(y_test, y_pred, average='macro')}")
print(f"Accuracy {accuracy_score(y_test, y_pred)}")
# %% Explain local prediction
lr_local = lr.explain_local(X_test[:100], y_test[:100], name='Logistic Regression')
show(lr_local)
# %% Explain global logistic regression model
lr_global = lr.explain_global(name='Logistic Regression')
show(lr_global)
# %% Fit decision tree model
tree = ClassificationTree()
tree.fit(X_train, y_train)
print("Training finished.")
y_pred = tree.predict(X_test)
print(f"F1 Score {f1_score(y_test, y_pred, average='macro')}")
print(f"Accuracy {accuracy_score(y_test, y_pred)}")
# %% Explain local prediction
tree_local = tree.explain_local(X_test[:100], y_test[:100], name='Tree')
show(tree_local)
# %% Fit Explainable Boosting Machine
ebm = ExplainableBoostingClassifier(random_state=2021)
ebm.fit(X_train, y_train)
print("Training finished.")
y_pred = ebm.predict(X_test)
print(f"F1 Score {f1_score(y_test, y_pred, average='macro')}")
print(f"Accuracy {accuracy_score(y_test, y_pred)}")
# %% Explain locally
ebm_local = ebm.explain_local(X_test[:100], y_test[:100], name='EBM')
show(ebm_local)
# %% Explain globally
ebm_global = ebm.explain_global(name='EBM')
show(ebm_global)
# %%