-
Notifications
You must be signed in to change notification settings - Fork 1
/
CacheMemory.h
206 lines (160 loc) · 5.9 KB
/
CacheMemory.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#include <iostream>
#include <set>
#include <bitset>
#include <vector>
#include "MemoryAccess.h"
#include "InterStateBuffers.h"
#define NUMBER_SETS 64
#define SET_SIZE 2
// Address is 12 BIT .
// SIZE OF MAIN MEMORY IS 32 MB
using namespace std;
class Cache{
private:
vector <vector <int> > CacheMem;
vector <int> WriteBack; // The Dirty bit.
int CacheSize, BlockSize,choice,waysofset;
int numblocks;
int coldmisses,datamiss;
int accesses;
int capacity;
void divide (bitset <32> source , bitset <8> & byte1 , bitset<8> & byte2 , bitset <8> & byte3 , bitset <8> & byte4) {
int k=0,l=0,m=0,n=0;
for(int i = 0 ; i <= 7 ; i++)
byte1[k++] = source[i];
for(int i = 8 ; i <= 15 ; i++)
byte2[l++] = source[i];
for(int i = 16 ; i <= 23 ; i++)
byte3[m++] = source[i];
for(int i = 24 ; i <= 31 ; i++)
byte4[n++] = source[i];
}
void unite (bitset <32> & output , bitset <8> byte1 , bitset<8> byte2 , bitset <8> byte3 , bitset <8> byte4) {
int k=0,l=0,m=0,n=0;
for (int i =0;i< 32 ; i++) {
if (i<8) {
output[i] = byte1[k];k++;
} else if (i<16) {
output[i] = byte2[l];l++;
} else if (i<24) {
output[i] = byte3[m];m++;
} else {
output[i] = byte4[n];n++;
}
}
}
public:
Cache(){
CacheMem.resize(128);
WriteBack.resize(128);
}
Cache(int cs,int bs, int choice, int ways){ // Given in MB.
CacheSize = cs;
BlockSize = bs;
this->choice = choice;
waysofset = ways;
numblocks = CacheSize/bs;
CacheMem.resize(numblocks);
for(int i = 0 ; i < CacheMem.size() ; i++)
CacheMem[i].resize(BlockSize+3);
coldmisses = 0;
datamiss = 0;
accesses = 0;
capacity = 0;
}
void ReadCache(MemoryAccess &memobject, InterStateBuffers &isb,int choice){ // choice 1 for word, choice 2 for byte
bitset <12> address = isb.RZ.readInt();
accesses++;
isb.accesses_data++;
int blockoffset = address.to_ulong() % BlockSize;
int blocknumber = address.to_ullong() / BlockSize;
int tag = blocknumber / numblocks;
blocknumber %= numblocks;
int validdata = CacheMem[blocknumber][0]; // validity
int tagfound = CacheMem[blocknumber][1]; // tag
if(validdata == 0){
coldmisses += 1;
}
if(tagfound == tag && validdata == 1){
isb.hits_data++;
int index = 3+blockoffset;
CacheMem[blocknumber][2]++; // update hits
if(choice == 1){ // if its loadword
bitset <32> output;
bitset <8> byte1,byte2,byte3,byte4;
byte4 = CacheMem [blocknumber][index + 0];
byte3 = CacheMem [blocknumber][index + 1];
byte2 = CacheMem [blocknumber][index + 2];
byte1 = CacheMem [blocknumber][index + 3];
unite (output, byte1, byte2, byte3, byte4);
isb.mem_register = output.to_ulong();
}
else if(choice == 2){
int data = CacheMem[blocknumber][3 + blockoffset];
isb.mem_register = data;
}
}
if(tag != tagfound || validdata == 0 ){
if(validdata == 1){
isb.conflict_misses_data++;
}
if(validdata == 0){
isb.cold_misses_data++;
}
if(capacity == numblocks){
isb.capacity_misses_data++;
}
for(int i = 0 ; i < BlockSize ; i++){
bitset <8> data = memobject.readByte(address.to_ulong() - blockoffset + i );
CacheMem [blocknumber][i + 3] = data.to_ulong();
}
capacity++;
CacheMem[blocknumber][0] = 1;
int index = 3 + blockoffset;
bitset <32> output;
bitset <8> byte1,byte2,byte3,byte4;
byte4 = CacheMem [blocknumber][index + 0];
byte3 = CacheMem [blocknumber][index + 1];
byte2 = CacheMem [blocknumber][index + 2];
byte1 = CacheMem [blocknumber][index + 3];
unite (output, byte1, byte2, byte3, byte4);
isb.mem_register = output.to_ulong();
}
}
void WriteCache(MemoryAccess &memobject, InterStateBuffers &isb, int choice){
accesses++;
isb.accesses_data++;
bitset <12> address = isb.RZ.readInt();
int blockoffset = address.to_ulong() % BlockSize;
int blocknumber = address.to_ullong() / BlockSize;
int tag = blocknumber / numblocks;
blocknumber %= numblocks;
if(choice == 1)
{
bitset <8> byte1,byte2,byte3,byte4;
bitset <32> source = isb.RM.readBitset();
int index = 3 + blockoffset;
divide(source,byte1, byte2, byte3 , byte4); // byte1 lsb
// Write to its position
CacheMem[blocknumber][index + 0] = byte4.to_ulong();
CacheMem[blocknumber][index + 1] = byte3.to_ulong();
CacheMem[blocknumber][index + 2] = byte2.to_ulong();
CacheMem[blocknumber][index + 3] = byte1.to_ulong();
CacheMem[blocknumber][0] = 1; // tell that data is valid.
memobject.writeWord(isb);
}
else if(choice == 2){
bitset <8> byte;
bitset <32> source;
source = isb.RZ.readBitset();
int index = 3 + blockoffset;
for (int i = 0; i<8; i++) {
byte[i] = source[i];
}
CacheMem[blocknumber][index] = byte.to_ulong();
CacheMem[blocknumber][0] = 1;
memobject.writeByte(isb);
}
capacity++;
}
};