-
Notifications
You must be signed in to change notification settings - Fork 14
/
minimax.py
64 lines (54 loc) · 2.06 KB
/
minimax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""
MiniMax and AlphaBeta algorithms.
Author: Cyrille Dejemeppe <[email protected]>
Copyright (C) 2014, Universite catholique de Louvain
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
"""
inf = float("inf")
def search(state, player, prune=True):
"""Perform a MiniMax/AlphaBeta search and return the best action.
Arguments:
state -- initial state
player -- a concrete instance of class AlphaBetaPlayer
prune -- whether to use AlphaBeta pruning
"""
def max_value(state, alpha, beta, depth):
if player.cutoff(state, depth):
return player.evaluate(state), None
val = -inf
action = None
for a, s in player.successors(state):
v, _ = min_value(s, alpha, beta, depth + 1)
if v > val:
val = v
action = a
if prune:
if v >= beta:
return v, a
alpha = max(alpha, v)
return val, action
def min_value(state, alpha, beta, depth):
if player.cutoff(state, depth):
return player.evaluate(state), None
val = inf
action = None
for a, s in player.successors(state):
v, _ = max_value(s, alpha, beta, depth + 1)
if v < val:
val = v
action = a
if prune:
if v <= alpha:
return v, a
beta = min(beta, v)
return val, action
_, action = max_value(state, -inf, inf, 0)
return action