forked from VishwamAI/NeuroFlex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
quantum_protein_development.py
116 lines (92 loc) · 4.22 KB
/
quantum_protein_development.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import pennylane as qml
import numpy as np
class QuantumProteinFolding:
def __init__(self, num_qubits, num_layers):
self.num_qubits = num_qubits
self.num_layers = num_layers
self.dev = qml.device("default.qubit", wires=num_qubits)
self.params = np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 3))
@qml.qnode(device=qml.device("default.qubit", wires=1))
def qubit_layer(params, input_val):
qml.RX(input_val, wires=0)
qml.RY(params[0], wires=0)
qml.RZ(params[1], wires=0)
return qml.expval(qml.PauliZ(0))
class QuantumProteinFolding:
def __init__(self, num_qubits, num_layers):
self.num_qubits = num_qubits
self.num_layers = num_layers
self.dev = qml.device("default.qubit", wires=num_qubits)
self.params = qml.numpy.array(np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 2)), requires_grad=True)
def quantum_protein_layer(self, inputs, params):
@qml.qnode(self.dev)
def quantum_circuit(inputs, params):
for i in range(len(inputs)):
wire_i = i % self.num_qubits
next_wire = (i + 1) % self.num_qubits
# Dendrite processing
qml.RX(inputs[i], wires=wire_i)
qml.RY(params[wire_i, 0], wires=wire_i)
# Soma processing
qml.RZ(params[wire_i, 1], wires=wire_i)
qml.CNOT(wires=[wire_i, next_wire])
return [qml.expval(qml.PauliZ(i % self.num_qubits)) for i in range(len(inputs))]
return np.array(quantum_circuit(inputs, params))
def forward(self, amino_acid_sequence):
x = np.array(amino_acid_sequence)
for layer in range(self.num_layers):
x = self.quantum_protein_layer(x, self.params[layer])
return x
def protein_folding_simulation(self, amino_acid_sequence):
"""
Simulate protein folding using quantum circuits.
Args:
amino_acid_sequence (list): A list of numbers representing amino acids.
Returns:
np.array: Simulated protein structure.
Raises:
ValueError: If the amino_acid_sequence is empty.
"""
if len(amino_acid_sequence) == 0:
raise ValueError("The amino acid sequence cannot be empty.")
return self.forward(amino_acid_sequence)
def optimize_folding(self, amino_acid_sequence, num_iterations=200):
"""
Optimize the protein folding simulation.
Args:
amino_acid_sequence (list): A list of numbers representing amino acids.
num_iterations (int): Number of optimization iterations.
Returns:
np.array: Optimized protein structure.
"""
opt = qml.AdamOptimizer(stepsize=0.05)
def cost(params):
self.params = params.reshape(self.num_layers, self.num_qubits, 2)
folded_protein = self.protein_folding_simulation(amino_acid_sequence)
# New cost function: minimize the sum of squares of the folded protein
return qml.math.sum(folded_protein**2)
initial_params = self.params.copy()
params = initial_params.flatten()
for i in range(num_iterations):
params, cost_val = opt.step_and_cost(cost, params)
self.params = params.reshape(self.num_layers, self.num_qubits, 2)
optimized_result = self.protein_folding_simulation(amino_acid_sequence)
initial_result = self.forward(amino_acid_sequence)
if qml.math.sum(optimized_result**2) < qml.math.sum(initial_result**2):
return optimized_result
else:
self.params = initial_params
return initial_result
# Example usage
if __name__ == "__main__":
num_qubits = 4
num_layers = 2
qpf = QuantumProteinFolding(num_qubits, num_layers)
# Example amino acid sequence (simplified as numbers)
amino_acid_sequence = [0.1, 0.2, 0.3, 0.4]
# Simulate protein folding
folded_protein = qpf.protein_folding_simulation(amino_acid_sequence)
print("Simulated folded protein structure:", folded_protein)
# Optimize folding
optimized_protein = qpf.optimize_folding(amino_acid_sequence)
print("Optimized folded protein structure:", optimized_protein)