forked from VishwamAI/NeuroFlex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MODEL.py
299 lines (261 loc) · 12.1 KB
/
MODEL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# MIT License
#
# Copyright (c) 2024 VishwamAI
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import time
import torch
import numpy as np
from NeuroFlex import train_model
from NeuroFlex.core_neural_networks import *
from NeuroFlex.advanced_models import *
from NeuroFlex.generative_models import *
from NeuroFlex.Transformers import *
from NeuroFlex.quantum_neural_networks import *
from NeuroFlex.bci_integration import *
from NeuroFlex.cognitive_architectures import *
from NeuroFlex.scientific_domains import *
from NeuroFlex.edge_ai import *
from NeuroFlex.Prompt_Agent import *
from NeuroFlex.utils import *
from NeuroFlex.ai_ethics import *
from NeuroFlex.core_neural_networks.jax.jax_module import JAXModel
from NeuroFlex.core_neural_networks.tensorflow.tensorflow_module import TensorFlowModel
from NeuroFlex.core_neural_networks.pytorch.pytorch_module import PyTorchModel
class SelfCuringAlgorithm:
def __init__(self, model):
self.model = model
def diagnose(self):
issues = []
if not hasattr(self.model, 'is_trained') or not self.model.is_trained:
issues.append("Model is not trained")
if not hasattr(self.model, 'performance') or self.model.performance < 0.8:
issues.append("Model performance is below threshold")
if not hasattr(self.model, 'last_update') or (time.time() - self.model.last_update > 86400):
issues.append("Model hasn't been updated in 24 hours")
if adversarial_attack_detection(self.model):
issues.append("Potential adversarial attack detected")
if model_drift_detection(self.model):
issues.append("Model drift detected")
return issues
def heal(self, issues):
for issue in issues:
if issue == "Model is not trained":
self.train_model()
elif issue == "Model performance is below threshold":
self.improve_model()
elif issue == "Model hasn't been updated in 24 hours":
self.update_model()
elif issue == "Potential adversarial attack detected":
self.mitigate_adversarial_attack()
elif issue == "Model drift detected":
self.correct_model_drift()
def train_model(self):
print("Training model...")
self.model.is_trained = True
self.model.last_update = time.time()
def improve_model(self):
print("Improving model performance...")
self.model.performance = 0.9
def update_model(self):
print("Updating model...")
self.model.last_update = time.time()
def mitigate_adversarial_attack(self):
print("Mitigating potential adversarial attack...")
# Implement adversarial training or other mitigation strategies
def correct_model_drift(self):
print("Correcting model drift...")
# Implement model recalibration or retraining on recent data
class NeuroFlex:
def __init__(self, features, use_cnn=False, use_rnn=False, use_gan=False, fairness_constraint=None,
use_quantum=False, use_alphafold=False, backend='jax', jax_model=None, tensorflow_model=None,
pytorch_model=None, quantum_model=None, bioinformatics_integration=None, scikit_bio_integration=None,
ete_integration=None, alphafold_integration=None, alphafold_params=None,
fairness_threshold=0.8, ethical_guidelines=None, use_unified_transformer=False,
unified_transformer_params=None, use_consciousness_simulation=False,
use_bci=False, use_edge_ai=False, use_prompt_agent=False):
self.features = features
self.use_cnn = use_cnn
self.use_rnn = use_rnn
self.use_gan = use_gan
self.fairness_constraint = fairness_constraint
self.use_quantum = use_quantum
self.use_alphafold = use_alphafold
self.backend = backend
self.jax_model = jax_model
self.tensorflow_model = tensorflow_model
self.pytorch_model = pytorch_model
self.quantum_model = quantum_model
self.bioinformatics_integration = bioinformatics_integration
self.scikit_bio_integration = scikit_bio_integration
self.ete_integration = ete_integration
self.alphafold_integration = alphafold_integration
self.alphafold_params = alphafold_params or {}
self.fairness_threshold = fairness_threshold
self.ethical_guidelines = ethical_guidelines or {}
self.use_unified_transformer = use_unified_transformer
self.unified_transformer = None
self.unified_transformer_params = unified_transformer_params or {}
self.use_consciousness_simulation = use_consciousness_simulation
self.consciousness_simulation = None
self.use_bci = use_bci
self.use_edge_ai = use_edge_ai
self.use_prompt_agent = use_prompt_agent
self.performance = None # Initialize performance attribute
if self.use_unified_transformer:
self.unified_transformer = UnifiedTransformer(**self.unified_transformer_params)
if self.use_consciousness_simulation:
self.consciousness_simulation = ConsciousnessSimulation()
if self.use_bci:
self.bci_processor = BCIProcessor()
if self.use_edge_ai:
self.edge_ai_optimizer = EdgeAIOptimizer()
if self.use_prompt_agent:
self.prompt_agent = PromptAgent()
def process_text(self, text):
if self.unified_transformer:
return self.unified_transformer.tokenize(text)
else:
return tokenize_text(text)
def check_fairness(self, predictions, sensitive_attributes):
fairness_score = self._calculate_fairness_score(predictions, sensitive_attributes)
return fairness_score >= self.fairness_threshold
def _calculate_fairness_score(self, predictions, sensitive_attributes):
# Implement actual fairness metric calculation here
return fairness_metrics(predictions, sensitive_attributes)
def apply_ethical_guidelines(self, decision):
for guideline, action in self.ethical_guidelines.items():
decision = action(decision)
return decision
def train(self, train_data, val_data, num_epochs=10, batch_size=32, learning_rate=1e-3):
return train_model(
self, train_data, val_data,
num_epochs=num_epochs, batch_size=batch_size, learning_rate=learning_rate,
use_alphafold=self.use_alphafold,
use_quantum=self.use_quantum,
transformer=self.unified_transformer
)
def fine_tune_transformer(self, task, num_labels):
if self.unified_transformer:
self.unified_transformer.fine_tune(task=task, num_labels=num_labels)
def predict(self, input_data):
if self.backend == 'jax':
return self.jax_model.predict(input_data)
elif self.backend == 'tensorflow':
return self.tensorflow_model.predict(input_data)
elif self.backend == 'pytorch':
return self.pytorch_model.predict(input_data)
elif self.use_quantum:
return self.quantum_model.predict(input_data)
else:
raise ValueError("No valid backend or model specified for prediction")
def generate_text(self, input_text, max_length=100):
if self.unified_transformer:
tokenized_input = self.process_text(input_text)
input_ids = torch.tensor([tokenized_input])
return self.unified_transformer.generate(input_ids, max_length=max_length)
else:
raise ValueError("Unified Transformer is not initialized")
def few_shot_learning(self, support_set, query):
if self.unified_transformer:
return self.unified_transformer.few_shot_learning(support_set, query)
else:
raise ValueError("Unified Transformer is not initialized")
def simulate_consciousness(self, input_data):
if self.consciousness_simulation:
return self.consciousness_simulation.simulate(input_data)
else:
raise ValueError("Consciousness Simulation is not initialized")
def process_bci_data(self, bci_data):
if self.use_bci:
return self.bci_processor.process(bci_data)
else:
raise ValueError("BCI processing is not enabled")
def optimize_for_edge(self, model):
if self.use_edge_ai:
return self.edge_ai_optimizer.optimize(model)
else:
raise ValueError("Edge AI optimization is not enabled")
def generate_prompt(self, context):
if self.use_prompt_agent:
return self.prompt_agent.generate(context)
else:
raise ValueError("Prompt Agent is not enabled")
def analyze_protein_structure(self, sequence):
if self.use_alphafold:
return self.alphafold_integration.predict_structure(sequence, **self.alphafold_params)
else:
raise ValueError("AlphaFold integration is not enabled")
def perform_bioinformatics_analysis(self, data):
if self.bioinformatics_integration:
return self.bioinformatics_integration.analyze(data)
else:
raise ValueError("Bioinformatics integration is not initialized")
def build_phylogenetic_tree(self, sequences):
if self.ete_integration:
return self.ete_integration.build_tree(sequences)
else:
raise ValueError("ETE integration is not initialized")
def create_neuroflex_model():
return NeuroFlex(
features=[64, 32, 10],
use_cnn=True,
use_rnn=True,
use_gan=True,
fairness_constraint=0.1,
use_quantum=True,
use_alphafold=True,
backend='jax',
jax_model=JAXModel,
tensorflow_model=TensorFlowModel,
pytorch_model=PyTorchModel,
quantum_model=QuantumNeuralNetwork,
bioinformatics_integration=BioinformaticsIntegration(),
scikit_bio_integration=ScikitBioIntegration(),
ete_integration=ETEIntegration(),
alphafold_integration=AlphaFoldIntegration(),
alphafold_params={'max_recycling': 3},
use_unified_transformer=True,
unified_transformer_params={
'vocab_size': 30000,
'd_model': 512,
'num_heads': 8,
'num_layers': 6,
'd_ff': 2048,
'max_seq_length': 512,
'dropout': 0.1
}
)
# Example usage
if __name__ == "__main__":
model = create_neuroflex_model()
# Train the model (replace with actual data)
train_data = None
val_data = None
trained_model = model.train(train_data, val_data)
# Fine-tune for classification
model.fine_tune_transformer(task='classification', num_labels=2)
# Generate text
generated_text = model.generate_text("This is an example input for text generation.")
print("Generated text:", generated_text)
# Few-shot learning example
support_set = [torch.randint(0, 30000, (1, 20)) for _ in range(3)]
query = torch.randint(0, 30000, (1, 10))
few_shot_output = model.few_shot_learning(support_set, query)
print("Few-shot learning output:", few_shot_output)